История философии. Древняя Греция и Древний Рим. Том 1

Страница: 1 ... 104105106107108109110111112113114 ... 197

Этот вывод подтверждается изучением вопроса о гипотезах. Неттлшип полагал, что Платон имеет в виду то, что математик принимает свои постулаты и аксиомы за истину: сам он их не проблематизирует, а если кто–то другой подвергает их сомнению, математик говорит, что он не желает обсуждать этот вопрос. Платон употребляет слово «гипотеза» не для обозначения суждения, которое считается истинным, но которое может и не быть таковым, а для обозначения суждения, которое он считает самообоснованным и потому не нуждающимся в оправдании и объяснении его связи с бытием. Однако следует отметить, что примеры «гипотез», приведенные в 510 с, представляют собой скорее примеры сущностей, чем суждений, и что Платон говорит скорее об опровержении гипотез, чем о сведении их к самообоснованным или самоочевидным предпосылкам. Более подробное объяснение этого вопроса будет приведено в конце этого раздела.

В своей «Метафизике» Аристотель рассказывает нам, что, по мнению Платона, математические сущности располагаются «между формами и чувственными вещами». «Далее он говорит, что помимо чувственных вещей и форм существуют объекты математики, занимающие промежуточное положение. Они отличаются от чувственных вещей своей вечностью и неизменностью, а от Форм тем, что среди них много похожих, в то время как каждая форма уникальна и неповторима». Учитывая это высказывание Аристотеля, вряд ли было бы справедливо соотносить различие двух отрезков верхней части линии только с состоянием души – должно быть и различие в объектах. (Можно было бы различать только состояния души, если бы ??? ??????????? объекты математики сами по себе соответствовали бы тому же самому отрезку, что и ??? ???????, и математик рассматривал бы их как «материалы» для своих гипотез, а затем делал бы выводы. Тогда его душа находилась бы в таком состоянии, которое Платон называл рассудком, ибо он рассматривал бы свои постулаты как самоочевидные, не задавая дополнительных вопросов, и делал бы выводы с помощью наглядных схем. В этом случае математик имел бы дело не со схемами, как таковыми, а с идеальными математическими объектами, поэтому, если бы он рассматривал свои предположения «в связи с первоначалами», он постигал бы их не рассудком, а умом, хотя истинные объекты его размышлений, то есть идеальные математические объекты, оставались бы теми же самыми. Такое толкование, которое связывает два верхних отрезка линии только с состоянием души, подтверждается утверждением Платона, что математические вопросы, рассматриваемые в связи с первоначалами, принадлежат к области чистого разума. Однако замечания Аристотеля на эту тему, если они, конечно, правильно отражают мысль Платона, отрицают это толкование, ибо Аристотель был уверен, что Платоновы математические сущности занимают положение между ??? ??????? и ??? ??????.

— 109 —
Страница: 1 ... 104105106107108109110111112113114 ... 197