63 ют определённые трудности, когда говорил, что не считаю, что дизъюнктивные факты существуют. Возьмём 'Все люди смертны' Это означает: "'х - человек" влечёт, что "х смертен", чем бы ни был х'. Вы сразу же можете видеть, что это гипотетическая пропозиция. Из неё не следует ни то, что какие-либо люди существуют, ни то, что является человеком, а что - нет; она просто говорит, что если есть нечто, являющееся человеком, то это нечто смертно. Как указывал м-р Брэдли во второй части своего труда Принципы логики*, 'Нарушители чужого права владения будут преследоваться в судебном порядке' может быть истинной пропозицией, даже если никаких нарушителей нет, поскольку она означает просто то, что если кто-нибудь нарушит чужое право владения, то он будет преследоваться. Это сводится к тому, что 'то, что "х - человек" влечёт "х - смертен", 'всегда истинно', является фактом. Вероятно, не слишком трудно видеть, каким образом может быть истинным, если кто-то собирается сказать, что '"Сократ - человек" влечёт "Сократ смертен"' само не является фактом, т.е. то, что я предполагал, когда обсуждал дизъюнктивные факты. Я чувствую уверенность, что вы сможете обойти это затруднение. Я только полагаю его, как вопрос, который необходимо рассмотреть, когда отрицается существование молекулярных фактов, поскольку, если его нельзя обойти, мы должны будем допустить молекулярные факты. Теперь я хочу перейти к вопросу о совершенно общих пропозициях и пропозициональных функциях Под ними я подразумеваю пропозиции и пропозициональные функции, которые содержат только переменные и более вообще ничего. Последнее охватывает всю логику. Всякая логическая пропозиция состоит всецело и только из переменных, хотя и неверно, что каждая пропозиция, состоящая всецело и только из переменных, является логической. Стадии обобщения вы можете рассмотреть, например, следующим образом: 'Сократ любит Платона' 'х любит Платона' 'х любит y' 'xRy'. 64 Здесь вы проходите через процесс последовательного обобщения. Переходя к xRy, вы получаете схему, состоящую только из переменных, и вообще не содержащую констант, чистую схему двухместного отношения, и ясно, что любая пропозиция, выражающая двухместное отношение, может быть получена из xRy приписыванием значений х, R и у. Поэтому можно сказать, что данная схема является чистой формой всех таких пропозиций. Я подразумеваю под формой пропозиции то, что получается, когда её каждая отдельная конституента заменяется переменной. Если требуется иное определение формы пропозиции, вы можете склониться к её определению как класса всех тех пропозиций, которые можно получить из данной пропозиции подстановкой других конституент вместо одной или более конституент, содержащихся в пропозиции. Например, в 'Сократ любит Платона' что-то можно подставить вместо Сократа, что-то вместо Платона и какой-то другой глагол вместо 'любит'. Таким способом получается определённое число пропозиций, которые можно образовать из пропозиции 'Сократ любит Платона', заменой конституент данной пропозиции другими конституентами, так что здесь имеется определённый класс пропозиций, и все эти пропозиции имеют определённую форму, и, если угодно, можно сказать, что форма, которой все они обладают, есть класс, состоящий из них всех. Это достаточно предварительное определение, поскольку на самом деле идея формы более фундаментальна, чем идея класса. Я не предлагал бы его как действительно хорошее определение, но оно предварительно объяснит то, что подразумевается под формой пропозиции. Форма пропозиции представляет собой то, что является общим у любых двух пропозиций, где одна может быть получена из другой, подстановкой иных конституент вместо первоначальных. Получая формулы типа xRy, содержащие только переменные, вы находитесь на пути к тому типу вещей, о которых можете утверждать в логике. — 52 —
|