66 одна вещь'. Эту пропозицию вы можете выразить в логических терминах. Если вам угодно, она будет выражать то, что пропозициональная функция 'х = х' является возможной. Стало быть, эту пропозицию вы в состоянии выразить в логических терминах; но из логики вы не сможете узнать, является она истинной или ложной. Поскольку вы её знаете, вы знаете её эмпирически, потому что может случиться так, что универсума нет, и тогда она не была бы истинной. То, что универсум существует, так сказать, простая случайность. Пропозиция о том, что в мире имеет место в точности 30.000 предметов, также может быть выражена в чисто логических терминах, и она определённо является не пропозицией логики, но эмпирической пропозицией (истинной или ложной), потому что мир, содержащий более 30.000 предметов, и мир, содержащий менее 30.000 предметов, оба возможны, поэтому, если случится так, что существует в точности 30.000 предметов, последнее можно назвать случайностью и это не является пропозицией логики. Кроме того, есть две пропозиции, используемые в математической логике, а именно, аксиома мультипликативности и аксиома бесконечности*. Они также могут быть выражены в логических терминах, но не могут быть доказаны или опровергнуты логикой. В отношении аксиомы бесконечности невозможность логического доказательства или опровержения можно считать установленной, но в случае с аксиомой мультипликативности это, вероятно, всё ещё в некоторой степени открыто для сомнения. Всё то, что является пропозицией логики, должно быть в том или ином смысле подобно тавтологии. Последнее должно быть чем-то таким, что обладает некоторыми особыми качествами, которые я не знаю как определить и которые принадлежат только логическим предложениям, и никаким другим. Примерами типичных логических предложений являются: 'Если из р следует q, а из q следует r, то из р следует r'. 'Если все а суть b, а все b суть с, то все а суть с'. 'Если все а суть b, и х есть а, то х есть b'. Это - пропозиции логики. Они имеют определённые особые качества, которые отличают их от всех других пропозиций и предоставляют нам возможность знать их a priori. Но каковы точно эти характеристики, я не в состоянии вам сообщить. Хотя необходимой характеристикой логических предложений и является то, что они состоят только из переменных, т.е. что они должны утверждать универсальную истину, или иногда-истину [sometimes-truth] пропозициональной функции, всецело состоящей из переменных - хотя 67 это и необходимая характеристика, она не удовлетворительна. Прошу прощения, что я оставил так много проблем нерешёнными. Я всегда должен приносить подобное извинение, но мир действительно достаточно загадочен, и я ничего не могу поделать. — 54 —
|