Рост содержания математических знаний всегда связан с развитием математической символики. Последняя, если она достаточно хорошо отражает реальную сущность математических операций, активно воздействует на математику и сама приобретает оперативные свойства. Единую систему алгебраических символов, последовательно проведенную, первым дал, по-видимому, Виета. Франсуа Виета (1540–1603) – французский математик, юрист по образованию и роду деятельности. Главный труд его жизни – «Введение в искусство анализа», огромное и чрезвычайно обстоятельно написанное сочинение по новой алгебре. Правда, он не был полностью завершен. Замысел Виеты определялся следующими соображениями: крупные успехи итальянских математиков в решении уравнений 3-й и 4-й степени достигнуты благодаря применению эффективных алгебраических приемов. Но число отдельных видов алгебраических уравнений огромно и растет, достигнув, например, у Кардано шестидесяти шести; каждый из видов требовал особых приемов. Необходимо найти общие методы подхода к решению алгебраических уравнений; последние должны рассматриваться в возможно более общем виде с буквенными коэффициентами. Кроме того, необходимо сочетать эффективность алгебраических приемов со строгостью геометрических построений, хорошо знакомых Виете. Благодаря созданной им символике впервые появилась возможность выражения уравнений и их свойств общими формулами. Объектами математических операций стали не числовые задачи, а сами алгебраические выражения. Именно этот смысл вкладывал Виета в характеристику своего исчисления как «искусства, позволяющего хорошо делать математические открытия» . Символы Виеты были вскоре усовершенствованы его младшими современниками, особенно Гэрриотом (1560–1621). В сочинениях Виеты подводится своеобразный итог математики эпохи Возрождения. Но его алгебра была еще несовершенной. Ее очень утяжеляла видовая трактовка величин, обладающих размерностью. В ней нет общей трактовки степеней, все степени натуральные. Принципиальное разделение чисел и алгебраических величин не позволяло ему употреблять радикалы для величин, а лишь для чисел. Эту алгебру скоро вытеснила алгебра Декарта. Однако известно, что Ферма, например, придерживался алгебры Виеты, когда строил аналитическую геометрию. Алгебраисты завершили символическое оформление своей науки и пробовали формулировать и решать проблемы общей теории алгебраических уравнений. Тригонометрия отделилась от астрономии, ее результаты получили достаточную степень общности. Полностью освоено геометрическое наследие древних. Математика постоянных величин к концу XVI века завершала цикл своего формирования. — 278 —
|