Был ли Бог математиком?

Страница: 1 ... 6364656667686970717273 ... 194

Ему [Гуку] лучше было бы отказаться от этого дела, потому что он неспособен сделать его. Ведь по его словам совершенно ясно, что он не понимал, что с этим делать. Разве это не чудовищно? Математики, которые все выясняют, согласуют и вообще делают все дело, должны довольствоваться тем, что они всего лишь сухие вычислители и поденщики, а этот, который не делает ничего, только притворяется и сует свой нос куда попало, получит славу за все изобретения как своих последователей, так и всех, кто был до него.

Ньютон совершенно недвусмысленно указал, почему он считал, что у Гука нет никаких заслуг: Гук не умел формулировать свои идеи на языке математики. И в самом деле, то качество, которое, собственно, и выделяет теории Ньютона из общего ряда, та присущая им особенность, которая и превращает их в нерушимые законы природы, – это и есть тот самый факт, что все они выражены на кристально ясном, самосогласованном языке математических уравнений. А теоретические идеи Гука, напротив, при всей своей – во многих случаях – изобретательности, выглядели всего лишь как собрание подозрений, домыслов и натяжек[69].

Кстати, в феврале 2006 года были обнаружены рукописные протоколы заседаний Королевского общества с 1661 по 1682 год, которые долгое время считались утраченными. Рукописи, содержащие более 520 страниц, начертанных рукой самого Гука, были обнаружены в одном доме в Гемпшире, где, видимо, последние полвека хранились в буфете. В протоколах за декабрь 1679 года речь идет о переписке между Гуком и Ньютоном, где они обсуждали эксперимент, который подтверждал бы, что Земля вращается.

Ньютон – вернемся к его научной стратегии – опирался на концепцию Декарта, гласящую, что Вселенную можно описать математически, и превратил ее в рабочую реальность. В предисловии к своему фундаментальному труду «Математические начала натуральной философии» («Philosophiae Naturalis Principia Mathematica » или просто «Principia ») он провозгласил следующее[70].

…Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге мы даем пример вышеупомянутого приложения, объясняя систему мира, ибо здесь из небесных явлений, при помощи предложений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря (здесь и далее пер. А. Крылова ).

— 68 —
Страница: 1 ... 6364656667686970717273 ... 194