Математика карты Нью-ЙоркаРис. 24 Взгляните на фрагмент карты Манхэттена на рис. 24. Если вы стоите на углу Тридцать четвертой улицы и Восьмой авеню, а у вас назначено свидание на углу Пятьдесят девятой улицы и Пятой авеню, найти дорогу не составит труда, верно? Именно в этом и заключалась идея новой геометрии по Декарту. Он снабдил свое «Рассуждение о методе» приложением «Геометрия» объемом в 106 страниц[61]. Трудно поверить, что эта поразительно простая концепция совершила настоящую революцию в математике. Начал Декарт с почти что тривиального факта: как показывает карта Манхэттена, пара чисел однозначно определяет положение точки на плоскости (например, точка А на рис. 25, а). Затем, опираясь на этот факт, Декарт разработал мощную теорию кривых – аналитическую геометрию . В честь Декарта пара перпендикулярных прямых, которая дает нам систему отсчета, получила название «Декартова система координат». По традиции горизонтальную линию называют «ось х », вертикальную – «ось у », а точку их пересечения – «начало координат». Например, точка, обозначенная А на рис. 25, а, имеет координаты х = 3 и у = 5, что принято обозначать упорядоченной парой чисел (3, 5) (обратите внимание, что начало координат обозначается (0, 0)). А теперь предположим, что мы хотим как-то охарактеризовать все точки на плоскости, которые находятся на расстоянии ровно 5 единиц от начала координат. Разумеется, это и есть геометрическое определение окружности с центром в начале координат и с радиусом в 5 единиц (рис. 25, b). Если вы возьмете точку (3, 4) на этой окружности, то окажется, что ее координаты удовлетворяют равенству 32 + 42 = 52. Более того, легко показать (при помощи теоремы Пифагора), что координаты (x, y ) любой точки этой окружности удовлетворяют равенству х ?2 + у ?2 = 52. Но и этого мало: точки на окружности – это единственные точки на плоскости, для которых верно уравнение х ?2 + у 2 = 52. Это значит, что алгебраическое уравнение х ?2 + у 2 = 52 характеризует окружность точно и однозначно. Иначе говоря, Декарт открыл[62] способ выразить геометрическую кривую алгебраическим уравнением или численно – и наоборот. Наверное, когда речь идет просто об окружности, кажется, будто в этом нет ничего особенно интересного, однако все на свете графики – будь то недельные колебания фондовой биржи, температура на Северном полюсе за последние сто лет или темп расширения Вселенной – основаны на гениальной идее Декарта. Алгебра и геометрия внезапно перестали быть двумя независимыми отраслями математики и превратились в два представления одних и тех же истин. Уравнение, описывающее кривую, неявно содержит все мыслимые свойства этой кривой, в том числе, например, все теоремы евклидовой геометрии. Но и это еще не все. Декарт показал, что если начертить в одной и той же системе координат разные кривые, то точки их пересечения задаются общими решениями соответствующих алгебраических уравнений. Таким образом Декарт сумел задействовать мощности алгебры, чтобы исправить неприятные недостатки классической геометрии. Например, Евклид определял точку как сущность, не имеющую ни частей, ни величины. Это довольно темное определение навсегда кануло в забвение, когда Декарт определил точку на плоскости просто как упорядоченную пару чисел (x, y ). Но даже эти открытия – всего лишь верхушка айсберга. Если две переменные величины x и y можно соотнести таким образом, чтобы каждому значению х соответствовало одно и только одно значение у , они составляют так называемую функцию , а функции воистину вездесущи. Когда вы отслеживаете уменьшение веса во время диеты, рост вашего ребенка в дни рождения или зависимость расхода топлива от скорости вождения, все эти данные можно выразить в виде функций. — 64 —
|