Был ли Бог математиком?

Страница: 1 ... 105106107108109110111112113114115 ... 194

Вот какой « декларацией независимости» описал новообретенную свободу математики Георг Кантор (1845–1918), создатель теории множеств [113]: « Математика совершенно свободна в своем развитии и связана лишь самоочевидными ограничениями – ее понятия должны соответствовать друг другу логически и при этом состоять в регулируемых определениями строгих отношениях с общепринятыми понятиями, которые были введены раньше и находятся в распоряжении исследователя» . К этому алгебраист Рихард Дедекинд (1831–1916) шесть лет спустя добавил[114]: « Полагаю, что понятие числа полностью независимо от идей или представлений о пространстве и времени… Числа – вольное творение человеческого разума» . То есть и Кантор, и Дедекинд считали математику абстрактным концептуальным исследованием, которое ограничивается исключительно необходимостью соблюдать непротиворечивость безо всяких притязаний как на вычисления, так и на язык физической реальности. Как подытожил Кантор, « Суть математики целиком и полностью в ее свободе » .

К концу XIX века большинство математиков уже придерживалось представлений Кантора и Дедекинда о свободе математики. Цель математики изменилась – теперь это был не поиск истин о природе, а конструирование абстрактных структур, систем аксиом и исследование всех логических следствий из этих аксиом.

Казалось бы, это должно было положить конец всем мучительным раздумьям над вопросом, изобретаем мы математику или же открываем. Если математика – не более чем игра, пусть и сколь угодно сложная, в которую играют по произвольно выдуманным правилам, нет никакого смысла верить в реальность математических концепций. Или все же есть?

Как ни странно, разрыв с физической реальностью вызвал у некоторых математиков прямо противоположные чувства. Вместо того чтобы раз и навсегда решить, что математика есть изобретение человека, они вернулись к первоначальной платоновской идее о математике как о независимом мире истин, чье существование столь же реально, сколь и существование физической Вселенной. Попытки связать математику с физикой эти « неоплатоники» прозвали прикладной математикой – в противоположность чистой математике, которая, как предполагалось, индифферентна ко всему физическому. Вот как об этом написал французский математик Шарль Эрмит (1822–1901) в письме голландскому математику Томасу Иоаннесу Стилтьесу (1856–1894) 13 мая 1894 года[115].

Мой дорогой друг, я очень рад, что вы склонны превратить себя в натуралиста, чтобы наблюдать явления мира арифметики. Доктрина у вас та же, что и у меня, я полагаю, что числа и аналитические функции – не произвольные продукты нашего сознания, я думаю, что они существуют вне нас и обладают всеми необходимыми свойствами предметов и явлений объективной реальности и мы находим или открываем их и изучаем их точно так же, как физики, химики и зоологи.

— 110 —
Страница: 1 ... 105106107108109110111112113114115 ... 194