Был ли Бог математиком?

Страница: 1 ... 103104105106107108109110111112113 ... 194

Эти смелые идеи открыли дорогу расширению математики в области, которые раньше представлялись немыслимыми – в геометрии с любым количеством измерений, – и при этом вопрос о том, имеют ли эти геометрии какое бы то ни было отношение к физическому пространству, полностью игнорировался.

Может быть, Кант и заблуждался, когда полагал, что наше восприятие пространства следует исключительно евклидовым образцам, однако не приходится сомневаться, что мы в состоянии воспринимать естественно и интуитивно не более трех измерений. Мы можем относительно легко представить себе, как выглядел бы трехмерный мир в двумерной платоновской Вселенной теней, но выйти за пределы трех измерений способно лишь подлинно математическое воображение.

Некоторые революционные труды по разработке n-мерной геометрии – геометрии в произвольном числе измерений – принадлежат перу Германа Гюнтера Грассмана (1809–1877). Грассман, у которого было одиннадцать братьев и сестер и который и сам стал отцом одиннадцати сыновей и дочерей, был школьным учителем, не получившим университетского математического образования[110]. При жизни он больше прославился трудами по лингвистике (по большей части изучением санскрита и готского), нежели достижениями в математике. Один его биограф писал: « Похоже, Грассману суждено, чтобы его время от времени открывали заново – всякий раз так, словно бы он был практически полностью забыт» . И все же именно Грассману принадлежит заслуга создания абстрактной науки о « пространствах» , в которой привычная геометрия – всего лишь частный случай. Свои новаторские идеи (коренившиеся в отрасли математики под названием линейная алгебра ) Грассман опубликовал в 1844 году в книге, которую специалисты знают как «Ausdehnungslehre » (« Теория расширений» , полное название – « Теория линейных расширений. Новая отрасль математики» ). В предисловии к этой книге Грассман писал: « Геометрию ни в коем случае нельзя считать… отраслью математики; ведь геометрия изучает нечто, уже имеющееся в природе, а именно пространство. Кроме того, я обнаружил, что должна существовать отрасль математики, которая исключительно абстрактным способом выводит законы, подобные законам геометрии» .

Рис. 46

Это радикально новое представление о природе математики. В глазах Грассмана традиционная геометрия, наследие древних греков, имеет дело с физическим пространством и поэтому не может считаться настоящей отраслью абстрактной математики. Для Грассмана математика была скорее абстрактной конструкцией человеческого разума, которая не обязательно находит себе применение в реальном мире.

— 108 —
Страница: 1 ... 103104105106107108109110111112113 ... 194