Начиная с 1813 года Гаусс разрабатывал геометрию, в которой отрицался последний постулат Евклида. Ученый при этом развивал идеи, которые появились у него в последние годы обучения в Коллегии Карла в разговорах с Вольфгангом Бойяи. В 1816 году Гаусс сообщил эти идеи в письме Шумахеру, своему другу и преподавателю астрономии, но, как всегда, ничего не опубликовал на эту тему. Впрочем, причиной на этот раз могло быть не только желание найти как можно более точное доказательство. Все, что касалось обсуждения постулатов Евклида, стало бы объектом ожесточенных споров, а Гауссу не нравилось участвовать в дискуссиях такого рода, которые казались ему скорее философскими. Когда в 1831 году Янош Бойяи (1802-1860), сын Вольфганга, изложил ему свои идеи о неевклидовой геометрии, Гаусс ответил ему так: «Я не могу хвалить Вашу работу, поскольку, сделав это, я бы хвалил самого себя, так как идеи, которые Вы мне излагаете, совпадают с идеями, которые я разработал 30-35 лет назад». Однако Гаусс признал Яноша Бойяи и Николая Лобачевского, другого создателя неевклидовой геометрии, гениями первой величины. Он даже выучил русский язык, чтобы иметь возможность читать работы Лобачевского в оригинале. Кроме того, математик добился, чтобы в 1842 году русского ученого признали членом Гёттингенской академии. Сегодня Гаусса, Лобачевского и Яноша Бойяи считают создателями неевклидовой геометрии. Сейчас, помимо евклидовой, известны гиперболическая и эллиптическая геометрии, зависящие от типа кривизны (положительной или отрицательной). НЕЕВКЛИДОВА ГЕОМЕТРИЯ Неевклидовой называется любой вид геометрии, постулаты и свойства которой отличаются от пяти постулатов Евклида. Существует много типов неевклидовой геометрии, хотя если свести дискуссию к гомогенным пространствам, в которых кривизна пространства одна и та же в каждой точке и в которых все его точки неразличимы, можно выделить три типа геометрий: — евклидова геометрия — удовлетворяет пяти постулатам Евклида и имеет нулевую кривизну; — гиперболическая геометрия — удовлетворяет только первым четырем постулатам Евклида и имеет отрицательную кривизну. В этой геометрии через каждую точку, не лежащую на прямой, проходит бесконечное количество прямых, параллельных данной; — эллиптическая геометрия — также удовлетворяет первым четырем постулатам Евклида и имеет положительную кривизну. Что касается пятого постулата Евклида, в этой геометрии через каждую точку, не лежащую на прямой, не проходит ни одной прямой, параллельной данной (вспомним, что в евклидовой геометрии проходит только одна параллельная прямая). Это случай меридианов Земли, которые в сферической геометрии (частный случай эллиптической) считаются параллельными. На рисунке изображены прямые в различных пространствах. — 68 —
|