Из публикаций Гаусса по геодезии особенно выделяются две, Bestimmung des Breitenunterschieds zwischen den Stemwarten von Gotinga und Altona durch Beobachtungen am Ramsdenschen Zenithsektor («Определение разности широт между обсерваториями Гёттингена и Альтона из наблюдений с зенитным сектором Рамсдена») 1828 года и Untersuchungen йЬег Gegenstande der Hoheren Geodasie I и II («Исследование по вопросам высшей геодезии I и II»), опубликованные в 1843 и 1846 годах соответственно. Оба труда оказали огромное влияние на последующее развитие геодезии. В этих работах, представляющих интерес только для специалистов, Гаусс изучает случай перехода от части сферы к плоскости, используя сферическую тригонометрию. Сферическая тригонометрия — это адаптация тригонометрии плоскости к сферическим поверхностям. Она необходима, поскольку применение традиционных тригонометрических формул для плоских треугольников невозможно для сферических треугольников. К примеру, для них не выполняется базовый закон о равенстве суммы углов треугольника 180°. Сумма углов сферического треугольника, показанного на рисунке, равна 270°. Сферический треугольник. Три его угла прямые, то ест в сумме дают 270°. В этих двух работах Гаусс также выделил место для треугольников на поверхности эллипсоида — более общий случай по сравнению со сферой. Хорошим примером эллипсоида может быть мяч для регби. Чтобы облегчить вычисления, Гаусс привел таблицы, в которых решались уравнения для частных случаев. ВОЗМОЖНО, ЕСТЬ ДРУГАЯ ГЕОМЕТРИЯ В результате работ в области геодезии к Гауссу вернулся интерес к геометрии, которая уже была объектом его исследований в годы учебы. Гаусса называют одним из отцов неевклидовой геометрии и дифференциальной геометрии. Со времен Евклида считалось, что этот гениальный математик в своей работе «Начала» определил всю геометрию, которая только может быть, и что выйти за пределы его постулатов сравнимо с ересью. Евклид сформулировал свою геометрию на основе нескольких постулатов, которые считал аксиомами. В математике аксиомы — это очевидные истины, не требующие доказательства. Евклид определил пять постулатов. 1. Через две точки можно провести одну и только одну прямую, соединяющую их. 2. Каждый отрезок может быть бесконечно продолжен в любом направлении. 3. Можно провести любую окружность с центром в любой точке и с любым радиусом. 4. Все прямые углы подобны, то есть имеют одинаковый размер и совпадают, если их наложить друг на друга перемещением. 5. Через точку, не принадлежащую прямой, можно провести единственную прямую, параллельную данной. — 66 —
|