Гаусс. Теория чисел. Если бы числа могли говорить

Страница: 1 ... 4748495051525354555657 ... 83

Эйлер также посвятил себя изучению простых чисел. Для него, как и для Гаусса, легче указать области математики, в которых он не сделал никаких открытий, чем наоборот. Страсть Эйлера к простым числам была усилена перепиской с Кристианом Гольдбахом, секретарем Петербургской академии наук.

Гольдбах, как и Мерсенн, не был профессиональным математиком, но его завораживала игра с числами и постановка числовых экспериментов. Именно Эйлеру он впервые рассказал о своей знаменитой гипотезе. Эйлер использовал помощь Гольдбаха для проверки доказательств своих гипотез о простых числах, поскольку в аргументации встречались не вполне обоснованные моменты. Также он очень интересовался гипотезами Ферма об этих числах. У Эйлера работа с простыми числами шла чрезвычайно хорошо, поскольку он обладал исключительными вычислительными способностями, виртуозно манипулировал формулами и обнаруживал скрытые связи. Его коллега, математик и один из реформаторов Парижской академии наук, Франсуа Араго (1786-1853) сказал: «Эйлер считает без видимых усилий, как люди дышат, а орлы летают».

Эйлер просто наслаждался вычислением простых чисел. Он составил их таблицы, включая числа до 100000 и даже больше. Как мы уже упоминали, ему удалось доказать, что пятое число Ферма не является простым — для этого ученый пошел теоретическим путем, поскольку для вычисления этого числа не хватало даже его способностей. А одним из самых любопытных открытий Эйлера стала формула, которая, казалось, генерирует огромное количество простых чисел. В 1772 году он вычислил все результаты, которые получаются, если присвоить х значения от 0 до 39 в уравнении х? + х + 41, и получил следующий список:

41,43, 47, 53,61,71,83,97,113, 131, 151,173, 197, 223, 251,281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231,1301, 1373,1447, 1523,1601.

Все эти числа простые. Начало казалось многообещающим, но при x = 40 и х=41 формула давала составные числа. И снова формула непрерывного и бесконечного порождения простых чисел ускользнула. Также Эйлер открыл, что если изменить независимый член уравнения и вместо 41 подставить 2, 3, 5, 11, 17, также получаются простые числа, но этот ряд всегда в конце концов прерывается. В 1751 году Эйлер пишет: «Есть некоторые загадки, в которые человеческий разум никогда не проникнет. Чтобы убедиться в этом, достаточно бросить взгляд на таблицы простых чисел. Мы заметим, что в них нет ни порядка, ни закона». Если даже великий Эйлер сдался, то проблема действительно серьезна. Так обстояли дела, когда вопросом заинтересовался Гаусс. Наш герой искренне восхищался Эйлером и даже сказал о нем, имея в виду теорию чисел:

— 52 —
Страница: 1 ... 4748495051525354555657 ... 83