ГЛАВА 4
Установление порядка между простыми числами
Любое число можно разложить на простые числа, которые и составляют фундамент арифметики. Однако непросто узнать, является ли большое число простым: нет формул, которые описывали бы все простые числа, и мы даже не знаем, как они распределяются в числовом ряду. Когда Гаусс подошел к этой проблеме, ему хватило ясности ума, чтобы открыть новые пути и установить порядок там, где до этого был только хаос.
Гаусс обращал свой интерес на очень разные математические области: алгебру, арифметику, астрономию, построения с помощью линейки и циркуля и некоторые другие. Но если о какой-то теме и можно сказать, что она сопровождала его всю научную жизнь, то это изучение простых чисел и их свойств. Вполне можно заметить, что если Гаусс сделал из теории чисел «царицу математики», то лучшими драгоценностями, которые украшали ее корону, были открытия из области простых чисел — чисел, которые зачаровывали (и ужасали) целые поколения математиков.
Самое древнее доказательство интереса человечества к простым числам — это кость, датированная 6500 годом до н.э. Кость Ишанго была найдена в 1960 году в экваториальной Африке. На ней вырезано несколько столбиков с насечками. Интересно, что в одном из них содержится 11, 13, 17 и 19 отметок, то есть все простые числа от 10 до 20. Изучением простых чисел была увлечена и древняя китайская цивилизация. Для китайцев они символизировали мужественность, поскольку не позволяли представить себя в виде произведения меньших чисел. Однако именно древние греки открыли их первое важное свойство: любое натуральное число можно единственным образом представить как произведение простых чисел. Другими словами, они доказали, что простые числа — это элементы, из которых состоит вся арифметика, точно так же, как химические элементы из таблицы периодической системы составляют основу Вселенной.
Насколько известно, Эратосфен (276-194 до н. э.), библиотекарь из Александрии, был первым, кто в III веке до н. э построил таблицы простых чисел. Он придумал рационально легкий способ узнать, какие числа являются простыми на промежутке между двумя величинами, например 1 и 1000. Отставив в сторону число 1, которое не все математики считают простым, он искал первое простое число: число 2. Далее он вычеркивал все числа, кратные 2 (четные), которые, следовательно, уже не могли быть простыми. В списке незачеркнутых чисел он искал первое незачеркнутое число, которое автоматически было простым, в этом случае 3, и действовал тем же образом, зачеркивая все числа, кратные 3. Эратосфен продолжал эту процедуру, зная, что первое в его списке незачеркнутых чисел вновь будет простым (далее 5, 7,11...) и что именно оно определяет следующие числа, которые нужно удалить из списка (все кратные ему). С помощью этой процедуры он построил таблицы простых чисел. Этот метод получил название решето Эратосфена, поскольку таким образом строилась сеть, не включавшая числа, которые не могут быть простыми, точно так же, как сито золотоискателей помогает им находить самородки. Естественно, на каждом этапе ячейка решета Эратосферна меняется в размерах, поскольку процесс ускоряется.
— 47 —
|