Логика мышления

Страница: 1 ... 4950515253545556575859 ... 95

Такое взаимодействие астроцитов и нейронов не передает конкретных информационных образов, но оно очень хорошо подходит на роль механизма, обеспечивающего распространение «поля активности», которое может управлять обучением синапсов и таким образом задавать пространственные координаты для новых детекторных паттернов.

Кроме астроцитов на поведение синапсов влияет еще и межклеточный матрикс. Матрикс – это множество молекул, произведенных клетками мозга и заполняющих межклеточное пространство. В статье (Dityatev A., Schachner M., Sonderegger P., 2010) показано, что изменение состава матрикса влияет на характер синаптической пластичности, то есть на обучение нейронов.

Импульсная активность нейронов создает точечный пространственный узор, который динамично меняется, кодируя информационные потоки. Эта активность изменяет состояние окружающей глиальной среды и среды матрикса таким образом, что создается нечто наподобие поля обобщенной активности (рисунок ниже).

Точечная активность и поле активности

Поле активности, с одной стороны, размывает точечную активность, создавая область, простирающуюся за пределы активных нейронов, с другой стороны, обладает инерционностью и продолжает существовать какое-то время после прекращения импульсной активности.

Если внутри этого поля активности мы создадим детектор текущего подаваемого образа, то он окажется поблизости от похожих на него детекторов. При этом похожесть может оказаться как похожестью по рецептивному полю, так и похожестью, возникающей за счет совмещения событий по времени.

В реальном мозге лучше всего пространственная организация изучена для зоны первичной зрительной коры. За счет преобразований, начинающихся еще в сетчатке, на первичную кору поступает сигнал, в котором основная информация – это линии, описывающие контуры объектов на исходном изображении. Нейроны первичной зрительной коры видят, в основном, небольшие фрагменты этих линий, проходящие через их рецептивные поля. Неудивительно, что существенная часть нейронов этой зоны – это детекторы линий, идущих под различными углами.

Экспериментально выявлено, что нейроны, располагающиеся вертикально друг под другом, реагируют на один и тот же стимул. Группу таких нейронов принято называть кортикальной мини колонкой. Вернон Маунткасл (В. Маунткасл, Дж. Эдельман, 1981) выдвинул гипотезу, что для мозга кортикальная колонка – это основная структурная единица переработки информации.

Мы ранее, говоря о паттернах нейронов детекторов, изображали их группами нейронов, распределенных в некой локальной области. Это было следствием того, что при моделировании, и соответственно, подготовке картинок использовались плоские нейронные сети. Реальная кора трехмерна. Объемность коры не влияет на наши рассуждения о возникновении и распространении волн идентификаторов. В трехмерной коре волны распространяются точно также как и в плоской. Но в объемной коре ничто не мешает нам, расположить нейроны-детекторы, образующие единый паттерн, вертикально друг под другом. Такое расположение ни хуже и не лучше любых других. Главное требование к паттерну – это случайность его узора. Так как связи нейронов распределены случайным образом, то расположенные вертикально в одной кортикальной колонке нейроны вполне можно считать случайным паттерном. Такое вертикальное расположение достаточно удобно при определении места создания детекторного паттерна. Не надо определять локальную область, а достаточно указать позицию, в которой требуется создать паттерн. Выбор позиции может быть, например, там, где поле активности максимально для всех свободных колонок некой окрестности. Можно предположить, что кортикальные миниколонки реальной коры – это и есть детекторные паттерны, описываемые в нашей модели.

— 54 —
Страница: 1 ... 4950515253545556575859 ... 95