Пространственная самоорганизация Мы исходим из того, что явления внешнего мира воздействуют на наши органы чувств, вызывая определенные потоки сигналов в нервных клетках. В процессе обучения кора приобретает способность детектировать определенные сочетания сигналов. Детекторами выступают нейроны, синаптические веса которых настраиваются на картины активности, соответствующие детектируемым явлениям. Нейроны коры следят за своим локальным окружением, образующим их рецептивное поле. Информация на рецептивные поля нейронов поступает либо посредством топографической проекции, либо через распространение волн идентификаторов, несущих уникальные узоры, соответствующие уже выделенным признакам. Нейроны-детекторы, реагирующие на одно и то же сочетание признаков, образуют детекторные паттерны. Узоры этих паттернов определяют уникальные волны идентификаторов, которые эти паттерны запускают, приходя в состояние вызванной активности. В 1952 году Алан Тьюринг опубликовал работу под названием «Химические основы морфогенеза» (Turing A. M., 1952), посвященную самоорганизации материи. Сформулированный им основной принцип гласил, что глобальный порядок определяется локальным взаимодействием. То есть, чтобы получить структурную организацию всей системы, необязательно иметь некий глобальный план, а можно ограничиться исключительно заданием правил близкого взаимодействия образующих систему элементов. Обучение нейронов происходит не изолированно, а с учетом активности их окружения. Правила учета этой активности определяют самоорганизацию коры. Самоорганизация означает, что по ходу обучения не просто формируются детектирующие нейронные паттерны, а что эти паттерны выстраиваются в некие пространственные конструкции, имеющие свой определенный смысл. Наиболее очевидный способ самоорганизации – это структурирование по степени близости. Можно обучать нейроны так, чтобы паттерны, соответствующие близким в некотором смысле понятиям, оказывались рядом и в пространстве коры. Позже мы увидим, что такое размещение окажется необходимым для реализации многих важных функций, свойственных мозгу. Пока же просто посмотрим на механизмы, которые могут обеспечить такую организацию. Достаточно неоднозначный вопрос – как мерить близость понятий. Один подход связан с тем, что любое понятие можно сопоставить с неким описанием. Например, описанием события может быть вектор, компоненты которого показывают выраженность в событии определенных признаков. Набор признаков, в которых ведется описание, образует описательный базис. В таком случае, разумная мера близости – это близость описаний. Чем ближе описание двух явлений, тем более похожи друг на друга эти явления. В зависимости от задачи, которая далее решается с использованием меры близости, можно выбрать тот или иной алгоритм расчета. Мера близости тесно связана с понятием расстояния между объектами. Одно можно пересчитать в другое и наоборот. — 51 —
|