Результат обучения карты Коханена Карты Коханена используют функцию амплитуды топологической окрестности, что предполагает, что нейроны кроме взаимодействия через синапсы могут обмениваться дополнительной информацией, говорящей о характере окружающей активности, и эта информация может влиять на ход их синаптического обучения. Необходимость в передаче дополнительной информации возникала несколько раньше и в нашей модели. Описывая обучение внесинаптических рецепторов, мы вводили правила, опирающиеся на знание нейронами окружающей активности определенного типа. Например, знание общего уровня активности позволяло нам принимать решения как о необходимости обучения, так и об отказе от него. Чтобы оставаться при построении модели в рамках определенной биологической достоверности, попробуем показать, какие механизмы в реальной коре могут отвечать за расчет и передачу дополнительной незакодированной в сигналы аксонов информации. Около 40 процентов объема мозга занимают глиальные клетки. Их общее количество где-то на порядок превосходит количество нейронов. Традиционно на глиальные клетки возлагается масса сервисных функций. Они создают объемный каркас, заполняя пространство между нейронами. Участвуют в поддержании гомеостаза среды. В процессе развития нервной системы задействованы для формирования топологии мозга. Шванновские клетки и олигодендроциты отвечают за миелинизацию крупных аксонов, что приводит к многократному ускорению передачи нервных импульсов. Так как глиальные клетки не генерируют потенциалов действия, они не участвуют напрямую в информационном взаимодействии. Но это не значит, что они полностью лишены информационных функций. Например, плазматические астроциты располагаются в сером веществе и имеют многочисленные сильно ветвящиеся отростки. Эти отростки опоясывают окружающие синапсы и влияют на их работу (рисунок ниже). Астроцит и синапс (Филдз, 2004) Так, например, был описан следующий механизм (R. D. Fields, B. Stevens-Graham, 2002). Активация нейрона ведет к тому, что из его аксона высвобождаются молекулы АТФ. АТФ (аденозинтрифосфат) — нуклеотид, играющий исключительно важную роль во всем организме, основная его функция – обеспечение энергетических процессов. Но кроме этого АТФ способен выступать и как сигнальное вещество. Под его воздействием инициируется перемещение кальция внутрь астроцита. Это, в свою очередь, приводит к тому, что астроцит высвобождает собственный АТФ. В результате происходит передача такого состояния на соседние астроциты, которые передают его еще дальше. При этом поглощение кальция астроцитом ведет к тому, что он начинает влиять на синапсы, с которыми контактирует. Астроциты способны как усиливать реакцию синапса за счет выброса соответствующего медиатора, так и ослаблять ее за счет его поглощения или выброса связывающих нейромедиатор белков. Кроме того, астроциты способны выделять сигнальные молекулы, регулирующие выброс медиатора аксоном. Концепция передачи сигналов между нейронами, учитывающая влияние астроцитов, называется трехсторонним синапсом. — 53 —
|