Набор на клавиатуре машины Джевонса посылок этого умозаключения (клавиатура содержит клавиши для четырех переменных и их отрицаний) приводит к тому, что на ее выходном табло получается заключение. Но на этой машине можно решать и задачи другого рода: представлять логическое выражение в виде набора конституэнт; проверять равносильность выражений; упрощать логические формулы; устанавливать, какие утверждения о данном классе можно выразить в терминах некоторых других классов; определять гипотезы, из которых следует данное выражение; проверять правильность силлогизмов и т. д. Машина Джевонса не освобождала, однако, логический вывод от участия «человеческой» логики: результат, который выдавала машина, нуждался в переформулировке. Кроме того, машина была логически маломощна, и хотя используя одновременно две машины, можно было решать более сложные задачи, тем не менее возможности придуманных Джевонсом процедур были весьма ограниченными. Главное ограничение состояло в том, что небогатой была сама логическая теория, лежавшая в их основе. Дальнейшее развитие автоматизации логических процедур, как мы увидим, оказалось существенно связанным с развитием самой логики. 3. ОБРЕТЕНИЕ ПИСЬМЕННОСТИМатематизация логики ведет свое начало от работ Дж. Буля и А. Де Моргана, в которых логика обрела свой алфавит, свою орфографию и свою грамматику. С этого момента она перестала зависеть от породившего ее естественного языка и получила собственные, адекватные своим особенностям, средства выражения. Для логики началась эпоха письменности – ее конструкции стало возможным наносить на бумагу в виде компактных сочетаний символов, в виде формул, и открылась возможность перерабатывать эти сочетания символов по четко определенным правилам. Как и изобретение письменности для естественного языка, это знаменовало революцию в развитии. Фактически была осуществлена первая часть мечты Лейбница, и хотя до реализации его главной цели – создания «автоматического рассуждения» – оставался еще огромный путь, одна из главных предпосылок достижения этой цели (в той мере, в которой она вообще достижима) была налицо. Имя Джорджа Буля (1815–1864) в последнее время стало известно даже людям, далеким от математики и логики. Понятие «булевой алгебры» уже знакомо многим нематематикам и нелогикам, а понятие «булевской переменной» вошло в обиход программистов, операторов и всех, кто пользуется ЭВМ. В этом состоит залог бессмертия имени Буля, поскольку кибернетика будет входить в нашу жизнь все шире (точно так же, когда единицу тока назвали ампером, имени великого французского физика навсегда суждено было войти в языки всех народов – вскоре наступил век электричества). Однако при жизни – да и долго после смерти – профессор математики из ирландского города Корка Джордж Буль, автор основополагающих для математической логики трудов «Математический анализ логики» (1847) и «Исследование законов мысли» (1854)[34] не считался человеком, внесшим большой вклад в науку, и его имя было известно лишь узким специалистам. — 31 —
|