200 занимательных логических задач

Страница: 1 ... 4142434445464748495051 ... 53

170. 888 + 88 + 8 + 8 + 8 = 1000

171. Один из отцов приходится другому сыном, т. е. речь идет не о четырех людях, а о трех – это дед, сын и внук. Дед дал сыну 500 рублей, а тот отдал внуку (т. е. своему сыну) 400 рублей. Таким образом, два сына вместе увеличили количество денег на 500 рублей.

172. Площадь основания широкой коробки в 2 ? 2, т. е. в четыре раза больше, чем узкой, а высота ее в три раза меньше. Значит, объем широкой коробки в 4/3 раза больше, чем узкой. Таким образом, низкая, но широкая коробка более вместительна, чем высокая, но узкая. Если содержимое высокой коробки переместить в низкую, оно заполнит собой только 3/4 ее объема.

173. Примем первое из искомых чисел за х, тогда второе последовательное число будет х + 1, а третье х + 2. В этом случае квадрат среднего числа будет (х + 1)2, а произведение двух остальных чисел – х(х + 2). Так как квадрат среднего числа должен быть на единицу больше двух остальных чисел, то можно составить уравнение:

(х + 1)2 = х(х + 2) + 1

Преобразовав, получаем равенство:

x2 + 2х + 1 = x2 + 2х + 1,

которое свидетельствует о том, что оно выполняется при всех значениях х, т. е., любые три последовательных числа обладают требуемым свойством. Например, возьмем числа 2, 3, 4:

32 = 2 · 4 + 1

То же самое будет со всеми другими тремя последовательными числами.

Задачу можно решить проще, если обозначить через х не первое, а второе (среднее) из искомых чисел. Тогда первое число будет х – 1, а второе х + 1, их произведение – (х + 1) (х – 1). Квадрат среднего числа на единицу больше произведения:

х2 = (х + 1)(х – 1) + 1

х2 – 1 = (х + 1)(х – 1).

Получаем всем известную разность квадратов двух выражений, которая истинна при всех значениях х.

174. Если толщина мягкого слоя вишни, равна толщине косточки, которую он окружает, то диаметр вишни в три раза больше диаметра косточки (также и радиус вишни в три раза больше радиуса косточки):

Значит, объем вишни больше объема косточки в 3 · 3 · 3 = 27 раз (ведь объем шарообразных тел рассчитывается по формуле 4/3 ?R3). Таким образом, на долю косточки приходится 1/27 всего объема вишни, а на долю мякоти – 26/27 ее объема, т. е. мягкая часть вишни больше косточки по объему в 26 раз.

175. Рассуждение неверно. В тот момент, когда мы наблюдаем Луну или Солнце у горизонта, на восходе или закате, они не только не ближе, но, наоборот, дальше от нас (приблизительно на величину земного радиуса), чем тогда, когда находятся в зените, что хорошо поясняет следующий рисунок:

— 46 —
Страница: 1 ... 4142434445464748495051 ... 53