Используя вероятностный подход, мы проведем следующие рассуждения. Пусть физическая система имеет W возможных состояний. Увеличение информации о ней, что было бы эквивалентно фиксации в определенном состоянии, приведет к уменьшению энтропии системы. Другими словами, I + S = const. (9) Чем больше известно о системе, тем меньше ее энтропия. Важно еще одно обстоятельство. Утрачивая информацию, мы увеличиваем энтропию системы. Увеличивать информацию о системе мы можем, лишь увеличивая количество энтропии вне этой системы, во внешней среде, причем всегда Формула Шеннона для определения количества информации (2) и формула Больцмана S = lnW для случая, когда вероятности отдельных состояний системы различаются (3), формально совпадают. Мы замечали, что они имеют совершенно различный смысл: информация (2) соответствует одному единственному состоянию системы из всех возможных W, мера этой информации I = lnW. Энтропия (3) соответствует возможности нахождения системы с некоторой вероятностью I/W в каждом из доступных состояний. Информация (2) и энтропия (3) оказались равны между собой, потому, что I соответствует максимальной информации одного единственного состояния, а 5 определена по множеству всех состояний. В замкнутой системе (возьмем, например, текст) увеличение энтропии приводит к «забыванию» информации, и мы приходим к соотношению I + S = const. В соответствии со вторым законом термодинамики энтропия замкнутой системы не может убывать со временем. Поэтому в замкнутых системах соотношение (9) может сдвигаться только к забыванию информации. Это означает, что рождение новой информации требует выхода за пределы изолированной системы. Мы рассмотрели соотношение I + S = const с точки зрения второго закона термодинамики. Формулу Шеннона можно было бы назвать «физической информацией». Колмогоров [15] ввел понятие «алгоритмической информации». Алгоритмическую информацию можно рассматривать как меру алгоритмической хаотичности. Алгоритмическая информация практически совпадает с информацией по Шеннону. Поясним эти понятия и их соотношение на двух примерах из живого мира. Предположим, что мы хотим определить радиочувствительность клеток популяции дрожжей. Мы ставим эксперимент: делаем суспензию клеток, облучаем ее, высеваем клетки на чашки Петри с питательной средой, затем определяем радиочувствительность клеток по числу выросших колоний. В ходе этого эксперимента мы заставляем геном клеток дрожжей работать по определенной схеме, одной единственной для каждой клетки. Тем самым мы выбираем и фиксируем одно единственное состояние из всех возможных. Этот эксперимент, который выявляет реакцию данных клеток на облучение, сводит все возможные состояния макромолекул, характеризующиеся некой максимальной энтропией, к одному единственному. Он может быть проведен за счет внешних ресурсов (питательной среды, источника облучения, работы лаборанта и т.д.). Второй пример – завоевание электората перед выборами. Хаотичные настроения толпы, характеризующиеся максимальной энтропией в обычное время, после агитации средствами массовой информации (накачивание внешней 7) перед выборами сменяются крайней политизацией. После выборов определяется количество проголосовавших за того или иного кандидата – поведение электората соответствует максимуму «информированности» о том или ином кандидате, какое-то количество неголосовавших составляет инертную константу. — 23 —
|