Информация и энтропия Своей зрелости классическая теория информации достигла к середине пятидесятых годов. Главная причина столь быстрого «созревания» – простота и элегантность ее математического аппарата, опирающегося на теорию вероятности. Отсутствие строгого определения понятия «информация» создавало впечатление, что объектом теории информации является нечто, имеющее мало общего с тем, что называют информацией в обыденной жизни. Действительно, если «в быту» доминирует содержательная, смысловая сторона информации, то здесь семантика информации вообще не рассматривалась. Представление об энтропии сообщений, развитое К. Шенноном и вскоре дополненное другими авторами (см. напр. [8-10]), как бы открывало возможность для отождествления понятия «информация» с понятиями «разнообразие» и «термодинамическая энтропия». Это порождало соблазн распространения классической теории информации далеко за пределы теории связи, в том числе на явления неживой и живой природы и даже на различные области искусства [11-13]. Два утверждения характерны для классической теории информации периода зрелости. Первое это постулирование «всюдности» информации. Второе утверждение – это то, что мерой количества информации, связанной с тем или иным объектом или явлением, может служить редкость его встречаемости или сложность его структуры. Эти утверждения можно назвать постулатами классической теории. Указанные постулаты, а также следствия из них, наиболее полно были изложены Л. Бриллюэном в его книгах [5, 6]. Прежде всего, за универсальную меру количества информации Л. Бриллюэн принял величину I = klnP, где Р - вероятность осуществления некоторого события или «сложность устройства» какого-либо объекта, k - постоянная, величина которой зависит от выбора системы единиц измерения, a ln - натуральный логарифм. Далее Л. Бриллюэн обратил особое внимание на сходство указанной формулы с формулой Л. Больцмана для исчисления количества энтропии S = klnW, где W - число микросостояний некоторой системы, соответствующей ее макросостоянию, а k - «постоянная Больцмана», равная 1,4·10-16 эрг-град-1 или 3,3·10-24 энтропийных единиц (1 э.е. = 1 кал'град-1). Отсюда Л. Бриллюэн сделал вывод, что, приняв k = 3,3·10-24 э.е., мы получим возможность выражать количество информации в энтропийных единицах (1 бит = 2,3·10-24 э.е.), а величину энтропии, напротив, в единицах информационных (1 э.е. = 4,3·1023 бит). Затем он сделал последний шаг в построении «негэнтропииного принципа»: сформулировал утверждение, согласно которому информация – это не что иное, как энтропия с обратным знаком, или негэнтропия. — 22 —
|