Фундаментальный анализ мировых валютных рынков

Страница: 1 ... 2425262728293031323334 ... 88

Прежде всего, следует отметить, что для многих эко­номических параметров важным бывает не столько само значение, сколько его изменение за прошедший проме­жуток времени. В экономической статистике использует­ся несколько способов записи изменения количественных параметров. Обозначим Xt числовое значение некоторо­го экономического параметра (цены, объема выпуска и т.д.) в момент времени t (день, месяц, квартал, год). Не­который момент, выбранный в качестве начала измере­ний, мы обозначаем t = 0, а затем считаем время целыми единицами: t = 1,2, 3,... .Величину изменения параметра Х за промежуток времени от t до t+1 обозначим

?Xt=Xt+l-Xt. Если, например Xt измеряет выпуск продукции за месяц t, то ?Xt - прирост выпуска за месяц t+1, если Xt - цена, то ?Xt - изменений цены, имевшее место в течение меся­ца t+1.

Очень часто нас интересует не сама величина изме­нения параметра X, а насколько это изменение велико по отношению к имевшемуся значению; тогда мы использу­ем процентные величины изменений:

(Xt+l/Xt-l)100(%).

Общепринятая форма представления процентных из­менений - годовые проценты (annualized). Предположим, валютный курс Х изменился за месяц с 1.6205 до 1.6510, АХ1 = X1 – Х0 = 0.0305; в процентном виде это будет

( X1 / X0 - 1 )100 = 1.88 %.

На сколько изменится валютный курс концу года, если этот темп будет сохраняться каждый месяц? Ответ дает­ся известной формулой сложных процентов:

( 1 + ( X1 / X0 - 1 ))12 - 1 = 0.25076

или 25.08 %. Это означает, что ежемесячный прирост на 1.88 % эквивалентен годовому росту 25.08 %, то есть 25.08% - это и есть 1.88 ежемесячных процентов, представ­ленные в виде годовых процентов (annualized).

Рассмотрим пример пересчета квартального показа­теля: пусть рост ВВП за первый квартал составил 1.9%; каков будет годовой рост при сохранении этого темпа? По формуле сложных процентов имеем,

( 1 + 0.019 )4 - 1 = 0.07819, или 7.82 %.

При анализе экономических данных следует иметь ввиду, что многие индикаторы экономической статисти­ки, публикуемые в информационных системах, проходят предварительную обработку, направленную на удаление сезонной зависимости (seasonality), которая может иска­жать тенденции экономического роста. Имеется много причин, по которым различные виды экономической ак­тивности зависят от времени года, а соответствующие им индикаторы каждый год повторяют похожую картину. Например, строительная активность сильно зависит от погоды, а значит и от сезона; перед новогодними празд­никами каждый год происходит рост объемов розничной торговли; производители автомобилей обычно именно летом переходят на производство новых моделей, так что в это время объем выпуска регулярно может снижаться; компании по сбору налогов, в соответствии с законода­тельством, имеют определенные временные рамки, как и выплаты доходов. Явно выраженная зависимость от вре­мени года видна на примере графиков валового внутрен­него продукта Японии (Рис.8.2), жилищного строитель­ства (Рис. 13.1) и объема продаж новых автомобилей США (Рис. 13.3).

— 29 —
Страница: 1 ... 2425262728293031323334 ... 88