Риторика. Теория и практика речевой коммуникации

Страница: 1 ... 164165166167168169170171172173174 ... 389

Ход умозаключения по этому виду аналогий можно записать в виде следующей формулы:

А имеет признаки а1, а2, а3, х;

В имеет признаки а1, а2, а3;

Вероятно, В имеет и признак х.

Возьмем такой пример: модель самолета (А) имеет такую же форму 1), такое же отношение веса к плоскости крыльев 2), такое же соотношение между весом носовой части и остальной части фюзеляжа (а3), как и конструируемый самолет. При испытании модели в аэродинами­ческой трубе оказывается, что модель неустойчива (x). На основании аналогии (сходство модели и самолета в трех признаках) конструктор непременно сделает вывод, что самолет будет также неустойчив при полете.

Умозаключения по аналогии применяются в физике, строительстве плотин, в лингвистике, кибернетике, истории и т.д. Это, в частности, объясняется тем, что во всех областях науки начинает интенсивно внедряться моделирование, когда возможное поведение интересующих нас объектов исследуется на условных образах, аналогичных исследуемому объекту.

Под моделью (лат. modulus — мера, франц. mod?le — образец) в науке понимается искусственно созданный объект в виде схемы, чер­тежа, логико-математических знаковых формул, физической конструк­ции и т.п., который, будучи аналогичен (подобен, сходен) исследуе­мому объекту (самолету, человеческому сознанию, клетке и т.д.), ото­бражает и воспроизводит в более простом, уменьшенном виде струк­туру, свойства, взаимосвязи и отношения между элементами исследу­емого объекта, непосредственное изучение которого невозможно, не­доступно или связано со значительными трудностями, большими зат­ратами средств и энергии, и тем самым облегчает процесс получения информации об интересующем нас предмете.

Исследуемый объект, по отношению к которому строится модель, называется черным ящиком, который представляет собой оригинал, об­разец, прототип, подчас не данный нам в наблюдении.

Все существующие модели обычно подразделяются на три типа: физические, вещественно-математические и логико-математические. Физические модели имеют природу, сходную с природой изуча­емого объекта, и отличаются от него лишь размерами, скоростью тече­ния исследуемых явлений и иногда материалом. Вещественно-ма­тематические модели имеют отличную от прототипов физическую природу, но допускают одинаковое с оригиналом математическое опи­сание. Логико-математические модели конструируются из зна­ков. Это абстрактные модели, которые строятся как исчисления (лат. calculus — счет). Под исчислением понимается, таким образом, систе­ма изучения объектов внешнего мира, в которой предметам какой-либо определенной области ставятся в соответствие материальные знаки (цифры, буквы и др.), и с ними затем по принятым в системе точным правилам производятся операции, необходимые для достижения постав­ленной цели. Исчисление можно определить и как формальное устрой­ство, позволяющее получать одни последовательности символов из дру­гих путем вывода. Исчисления имеют конечный алфавит и правило вывода (С.К. Клини). Математика, возникшая шесть тысячелетий тому назад в Древнем Египте и Вавилонии, строилась прежде всего как исчисление. Только в III в. до н.э. Евклид впервые построил математи­ку в виде аксиоматической теории, т.е. теории, построенной из конеч­ного числа аксиом (греч. axioma — значимое, достойное уважения, при­нятое, бесспорное) — истинных суждений, которые в рамках замкну­той теорий принимаются без доказательств в качестве исходного поло­жения и которые кладутся в основу доказательства всех других поло­жений этой теории. Из аксиом с помощью заданных правил вывода дедуктивно могут быть получены содержательно истинные предложе­ния (теоремы), сформулированные на языке данной теории.

— 169 —
Страница: 1 ... 164165166167168169170171172173174 ... 389