Риторика. Теория и практика речевой коммуникации

Страница: 1 ... 159160161162163164165166167168169 ... 389

Индуктивное доказательство применяется во всех науках, когда те­зис является общим суждением. Вот пример индуктивного доказатель­ства тезиса о том, что во всех треугольниках сумма внутренних углов равна двум прямым.

Аргументы: "в остроугольных треугольниках сумма внутренних уг­лов равна двум прямым"; "в прямоугольных треугольниках сумма внут­ренних углов равна двум прямым"; "в тупоугольных треугольниках сум­ма внутренних углов равна двум прямым".

Рассуждение: "поскольку, кроме остроугольных, тупоугольных и прямоугольных треугольников, нет больше никаких треугольников, а во всех остроугольных, тупоугольных и прямоугольных треугольни­ках сумма внутренних углов равна двум прямым, то, следовательно, во всех треугольниках сумма внутренних углов равна двум прямым".

Существо такого доказательства заключается в следующем: надо получить согласие своего собеседника на то, что каждый отдельный предмет, входящий в класс предметов, отображаемый в общем сужде­нии, имеет признак, зафиксированный в нем. Когда согласие на это получено, тогда с необходимостью вытекает истинность тезиса: раз каждый предмет в отдельности имеет этот признак, то естественно, что и все данные предметы имеют этот признак.

Резюмируя, следует сказать, что индуктивное доказательство вы­водит наличие некоторого свойства S у множества М, состоящего из n элементов, на основании того, что каждый из этих элементов обладает свойством S. Если мы хотим сделать заключение о целом множестве объектов (людей, предметов и т.д.), мы должны рассмотреть каждый элемент этого множества. А отсюда делается естественный и простой вывод: индуктивному доказательству подвергаются только те множе­ства, которые имеют малое количество элементов. Если множество имеет бесконечное количество элементов, строгое индуктивное доказательство построить невозможно. Если количество элементов множества очень ве­лико, но конечно, строгое индуктивное доказательство построить мож­но, но это очень трудоемкая, а потому обычно малоцелесообразная де­ятельность, так как каждый элемент в отдельности следует оценить с точки зрения наличия искомого признака. Поэтому строгое индуктив­ное доказательство распространяется только на так называемые мало­мощные множества (под мощностью множества понимается количество элементов, входящих в него). Множество мощностью 4 легко подверга­ется индуктивному доказательству, множество мощностью 100 — уже достаточно трудно, а множество мощностью 10000 почти не подверга­ется такому доказательству. Индуктивным способом невозможно дока­зать, скажем, тезис о том, что все москвичи умеют говорить по-русски. Но очень легко можно доказать тезис о том, что в определенной комна­те нет ни одного битого стекла, если в этой комнате, скажем, два окна, каждое окно имеет четыре стекла (всего стекол, таким образом, восемь). Можно рассмотреть первое стекло — нет трещин. Рассмотреть второе стекло — нет трещин и т.д. Удостоверившись, что каждое стекло — целое, можно сделать общий вывод: в этой комнате нет ни одного бито­го стекла, что важно, например, в условиях надвигающейся зимы для принятия решения о замене стекол в помещении.

— 164 —
Страница: 1 ... 159160161162163164165166167168169 ... 389