Эта уверенность имеет и другое основание в окружающем мире: общая закономерность, которая выражается в существенных признаках предмета или явления, всегда встречается в связи с рядом одних и тех же постоянных устойчивых признаков, хотя условия, в которых проявляется данная общая закономерность, могут быть различными. Привычка нашего ума к аналогии настолько сильна, что она иногда начинает действовать как бы механически. Аналогия, как мы уже видели, основана на том, что сходные в одном отношении вещи сходны и в остальном. Привыкнув к этому, люди удивляются, что шерстяные одеяла употребляются для предохранения льда от таяния, тогда как обычно шерстяные одеяла применяются для сохранения тепла. Такой вид аналогии часто встречается в практике самых различных ученых и специалистов. Так, ботаник, замечая по некоторым признакам сходство какого-либо растения с известными ему представителями вида, относит данное растение к этому виду, предполагая, что в найденном растении есть все, еще и не исследованные видовые признаки. Говоря об аналогии, можно сослаться на ряд примеров из истории науки: на аналогию Ньютона между падением яблока и движением небесных тел, на аналогию Франклина между электрической искрой и молнией, на аналогию между распространением волн на воде и звука в воздухе и пр. Ломоносов в одной из своих ранних работ на основании аналогии сделал вывод о том, что свет есть материя. "Один свет, — пишет он, — затемняет другой, например, солнце — свет свечи; подобно тому, как более сильный голос заглушает другой, слабый. Отсюда следует, что свет есть материя". Английский логик Джевонс говорит, что даже животные "делают заключения" до некоторой степени путем аналогии. Так, битая собака боится каждой палки, и существует очень немного собак, которые не убегут, если вы сделаете вид, будто поднимаете камень, хотя бы на этом месте не было никакого камня. Признание нормальной аналогии между двумя системами идей, говорит Дж.К. Максвелл, "приводит к более глубокому знанию обеих, чем познание, которое можно было получить, изучая каждую систему в отдельности". Аналогия благодаря своей наглядности и доступности широко используется в математике: а) при изучении десятичных дробей подчеркивается их аналогия с натуральными числами; б) свойства алгебраических дробей аналогичны свойствам арифметических (обыкновенных) дробей; в) методика решения задач на составление уравнений второй степени аналогична методике решения задач на составление уравнений первой степени; г) свойства членов геометрической прогрессии во многом аналогичны свойствам членов арифметической прогрессии и т.п. — 168 —
|