В-третьих, для обоснования нашей точки зрения можно сослаться на учебные показатели (оценки) детей в школе. Многие учителя указывают, что способность к быстрому и глубокому обобщению может проявляться в каком-нибудь одном предмете, не характеризуя учебной деятельности школьника по другим предметам. Некоторые из наших испытуемых, проявляющих, например, способность к обобщению «с места» в области математики, не обладали этой способностью в области литературы, исторнн или географии. Имели место и обратные случаи: учащиеся, хоро- 296 шо. н быстро обобщающие и систематизирующие материал но литературе, исторнд или биологии, не проявляли подобной способности, в области математики. <...]> Все сказанное выше позволяет нам сформулировать положение о специфичности математических способностей в следующем виде.,-Те или иные особенности, умственной деятельности школьника могут характеризовать только его математическую деятельность, проявляться только в сфере пространственных и количественных отношений, выраженных средствами числовой и знаковой символики, и не характеризовать других видов его деятельности, не коррелировать с соответствующими проявлениями в других областях. Таким образом, общие по своей природе умственные способности (например, способность к обобщению) могут в ряд* случаев выступать как специфические способности (способность к обобщению математических объектов, отношений и действий). <...> Мир математики — мир количественных и пространственных отношений, выраженных посредством числовой и знаковой сим* волики, очень специфичен и своеобразен. Математик имеет дело с условными символическими обозначениями пространственных и количественных отношений, мыслит ими, комбинирует, оперирует ими. И в этом очень своеобразном мире, в процессе весьма специфической деятельности общая способность так преобразуется, так трансформируется, что, оставаясь общей по своей природе, выступает уже как специфическая способность. Разумеется, наличие специфических проявлений общей... способности никак не исключает возможности других проявлений этой же общей способности (как наличие у человека способно-стей к математике не исключает наличия у него же способностей и в других областях). НЕКОТОРЫЕ СООБРАЖЕНИЯ О ПРИРОДЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ Материалы нашего исследования — анализ многочисленной литературы, анализ случаев чрезвычайно высокой математической одаренности в детском и зрелом возрасте (последнее — по биографическим материалам) —позволяют выделить некоторые факты, представляющие особый интерес для постановки вопроса о природе математической одаренности. Эти факты таковы: 1) часто* (хотя и не обязательное) весьма раннее формирование способностей к математике, нередко в неблагоприятных условиях (например, при явном противодействии родителей, опасающихся столь раннего яркого проявления способностей) и при отсутствии на первых порах систематического и целенаправленного обучения; 2) острый интерес и склонность к занятиям математикой, также часто проявляющиеся в раннем возрасте; 3) большая (а часто избирательная) работоспособность в области математики, связанная с относительно малой утомляемостью в процессе на- — 291 —
|