Для построения сетевых моделей деятельности оператора может быть использован также математический аппарат сетей Петри [27, 138]. Сеть Петри представляет математическую модель дискретных систем с параллельно функционирующими и асинхронно взаимодействующими компонентами. Предложены немецким ученым К. Петри в начале 60-х гг. Графически сети Петри (рис.8.4) представляют собой двухдольный ориентированный мультиграф с вершинами двух типов: переходами (моделирующими события в дискретной системе) и позициями (моделирующими предусловия выполнения события и постусловия, возникающие после события). Позиции графически обозначаются кружочками, переходы — черточками (рис. 8.4). Направленное ребро может связывать только позицию и переход. Кроме того, задается начальная разметка позиций: каждой из них сопоставляется одно из чисел 0, 1, 2... (число маркеров или фишек). Этим числом моделируется некоторая емкость позиций, количество ресурсов в ней. По отношению к переходам позиции могут быть входными или Рис. 8.4. Графическое изображение сети Петри. выходными. Некоторый переход t называется возбужденным или разрешенным (и может сработать), если число фишек его входной позиции р не меньше числа ребер, ведущих из р в t. Срабатывание возбужденного перехода заключается в удалении из каждой его входной позиции р числа фишек, равного числу ребер, ведущих из р в t, и добавлении в каждую его выходную позицию q числа фишек, равного числу ребер, ведущих из t в q. В результате срабатывания перехода получается новая разметка сети Петри. Два возбужденных перехода с общими позициями не должны срабатывать одновременно [166]. С помощью сетей Петри моделируются не временные, а причинно-следственные связи. Они широко применяются для моделирования различных систем. В инженерной психологии их используют для описания, проектирования и исследования деятельности оператора (группы операторов), определения показателей качества деятельности, расчета надежности системы «человек-машина». Например, в работе [138] сети Петри использованы для моделирования групповой деятельности операторов алгоритмических СЧМ. Для этого с каждым переходом сети, соответствующим действиям оператора, связываются соответствующие этому действию математическое ожидание и дисперсия времени, а также вероятность его безошибочного выполнения, а с каждой позицией — вероятность передачи управления, от одного действия к другому. Эти характеристики задаются с учетом сложности и структуры пультов управления операторов, воздействий факторов внешней среды, наличия напряженности в деятельности операторов, вызванной дефицитом времени на выполнение алгоритма. Для определения характеристик деятельности оператора сеть представляется в виде формульной записи. В дальнейшем осуществляется последовательное сокращение этой записи путем применения к каждой из операций формулы соответствующих ей соотношений, которые используются в аналитических методах оценки вероятностных характеристик алгоритмов при элементарных преобразованиях, упрощающих граф, представляющий алгоритм. — 199 —
|