Но тем не менее рассматриваемое нами пятимерное пространство искривлено. Это отражается в том способе, которым четырехмерные плоские срезы пространства-времени склеены вместе вдоль пятого измерения. Впервые я говорила об этой геометрии в институте теоретической физики Кавли в Санта-Барбаре, где теоретик-струнник Том Бэнкс объяснил мне, что с технической точки зрения пятимерная геометрия, которую нашли Раман и я, называется закрученной. Хотя многие искривленные геометрии пространства-времени в разговорной речи называются закрученными, технический термин относится к геометриям, в которых каждый срез плоский[155], но они собираются вместе с учетом общего закручивающего конформного фактора. Этот фактор есть функция, меняющая общий масштаб для положения, времени, массы и энергии в каждой точке в пятом измерении. Такое замечательное свойство закрученной геометрии достаточно тонкое, и я объясню его позднее в следующем разделе. Конформный фактор сказывается также на функции вероятности гравитона и взаимодействиях, которые мы вскоре изучим. Искривленное пространство с плоскими слоями изображено на рис. 79. Это заполненная воронка. Мы могли бы с помощью большого ножа нарезать воронку на плоские листки, но поверхность воронки явно искривлена. В некоторых отношениях это похоже на искривленное пространство-время, которое мы рассматриваем. Но аналогия не идеальна, так как граница воронки, ее поверхность есть единственное место, где она искривлена, в то время как в закрученном пространстве-времени кривизна есть везде. Эта кривизна отражалась бы в общем изменении масштаба измерительной линейки в пространстве и скорости хода часов для времени, которые будут разными в каждой точке пятого измерения. Более простой способ проиллюстрировать кривизну закрученного пространства-времени — обратиться к форме функции вероятности гравитона. Гравитон — это частица, переносящая гравитационное взаимодействие, и его функция вероятности говорит нам о вероятности обнаружения гравитона в любой фиксированной точке пространства. Интенсивность гравитации отражается в этой функции: чем больше ее значение, тем сильнее взаимодействия гравитона в этой конкретной точке и тем сильнее сила тяготения. Для плоского пространства-времени гравитон будет с равной вероятностью обнаруживаться везде. Функция вероятности для гравитона в плоском пространстве-времени была бы поэтому постоянной. Но для искривленного пространства-времени, как и для закрученной геометрии, которую мы рассматриваем, это уже будет не так. Кривизна говорит нам о форме гравитации. Когда пространство-время искривлено, значение функции вероятности гравитона различно в разных местах пространства-времени. — 297 —
|