Однако следует иметь в виду, что как бы нас не впечатлял факт отсутствия отклонений от закона гравитации на миллиметровых расстояниях, этот тест непригоден для проверки многих других моделей с дополнительными измерениями. Следует помнить, что только модели с двумя большими дополнительными измерениями приводят к эффектам, которые могли бы быть видимыми в миллиметровом масштабе. Если теория с более чем двумя большими дополнительными измерениями решает проблему иерархии (или если одна из моделей, которые мы рассмотрим в следующей главе, применима к нашему миру), отклонение от закона Ньютона произойдет только на много меньших расстояниях. Мы не знаем достоверно, на что похоже гравитационное притяжение между двумя телами, находящимися на расстоянии одной десятой миллиметра друг от друга. Никто еще этого никогда не проверял. Так что мы не знаем, откроются ли дополнительные измерения на расстоянии одной десятой миллиметра, что, если подумать, не так уж и мало. Относительно большие дополнительные измерения, хотя и не такие большие, как миллиметр, остаются правдоподобной возможностью. Чтобы проверить такие модели, нам следует подождать коллайдерных тестов. О них речь пойдет в следующем разделе. Поиски больших дополнительных измерений на коллайдереКоллайдеры частиц больших энергий хорошо приспособлены для открытия частиц КК, происходящих из больших дополнительных измерений, даже если таких измерений больше двух. В моделях АДД больших дополнительных измерений КК-партнеры гравитона всегда невероятно легкие. Если предположение о больших измерениях применимо к реальному миру, КК-партнеры гравитона должны быть достаточно легкими, чтобы рождаться на ускорителях, независимо от того, сколько имеется дополнительных измерений. Отсюда следует, что даже если размеры измерений меньше миллиметра, современные и будущие поиски на ускорителях должны быть способны их открыть. Современные коллайдеры производят более чем достаточное количество энергии, чтобы создать такие частицы малой массы. На самом деле, если бы единственной существенной величиной была энергия, частицы КК уже рождались бы в изобилии. Однако здесь возникает загвоздка. КК-партнеры гравитона взаимодействуют чрезвычайно слабо, на самом деле, настолько же слабо, как сам гравитон. Так как взаимодействия гравитона столь пренебрежимо малы, что гравитоны никогда не рождались или детектировались на коллайдерах с измеримой вероятностью, это тем более относится к КК-партнеру гравитона. Но возможности детектирования частиц КК из дополнительных измерений на самом деле значительно более перспективны, чем это могло показаться вам из сделанной унылой оценки. Дело в том, что если предложение АДД верно, должно быть так много легких КК-партнеров гравитона, что вместе они могут оставить детектируемое свидетельство своего существования. Если сценарий больших измерений верен, то, несмотря на очень редкое рождение отдельных частиц КК, вероятность рождения одной из большого количества легких частиц КК будет измеримо велика. Например, если существует два дополнительных измерения, примерно сто миллиардов триллионов мод КК будут достаточно легкими для того, чтобы рождаться на коллайдере, работающем на энергии порядка ТэВ. Вероятность рождения хотя бы одной из этих частиц будет достаточно велика, даже если вероятность рождения любой отдельно взятой частицы будет очень малой. — 287 —
|