Закрученные пассажи

Страница: 1 ... 281282283284285286287288289290291 ... 374

Установка, расположенная в подвале физического факультета Вашингтонского университета, получила название эксперимента Эт-Ваш (Е?t-Wash). Такое название напоминает имя знаменитого венгерского физика, изучавшего гравитацию, барона Роланда фон Этвеша, а с другой стороны, место проведения эксперимента (Вашингтон). Установка группы Эт-Ваш изображена на рис. 76. Она состоит из кольца, подвешенного над двумя притягивающими дисками, расположенными на небольшом расстоянии друг над другом. В кольце, а также в верхнем и нижнем дисках просверлены отверстия, настроенные так, что если закон Ньютона верен, то кольцо не будет поворачиваться. Однако, если существуют дополнительные измерения, разница в гравитационном притяжении между двумя дисками не согласовалась бы с законом Ньютона, и кольцо повернулось бы.

Адельбергер и Хекель не обнаружили никакого закручивания и заключили, что на тех расстояниях, которые они могли изучить, никаких эффектов, связанных с дополнительными измерениями (или иных) и модифицирующих силу тяготения, нет.

Их эксперимент измерил гравитационную силу на расстояниях, меньших, чем когда-либо это удавалось ранее, и установил, что закон Ньютона применим во всем интервале расстояний вплоть до десятой доли миллиметра. Это означало, что дополнительные измерения, даже те, для которых частицы Стандартной модели закреплены на бране, не могут быть размером с миллиметр, как предлагали АДД. Они должны быть по меньшей мере в десять раз меньше.

Примечательно, что измерения миллиметрового размера запрещены также наблюдениями в окружающем нас космическом пространстве. Квантово-механическое соотношение неопределенностей связывает миллиметр с энергией всего лишь порядка 10-3 эВ, а десятую долю миллиметра — с энергией порядка 10-2 эВ, иными словами, с очень малой энергией, например, на много порядков меньшей, чем требуется для рождения электрона.

Частицы с такой малой массой могли бы быть обнаружены в окружающем нас космическом пространстве и в звездных телах, таких как сверхновые или Солнце. Эти частицы были бы настолько легкими, что если бы они существовали, их могла бы рождать горячая сверхновая. Так как мы знаем, насколько быстро охлаждается сверхновая, и понимаем механизм охлаждения (за счет испускания нейтрино), мы знаем, что не может испускаться слишком большого количества других частиц малой массы. Если энергия теряется каким-то иным способом, скорость охлаждения была бы слишком большой. В частности, гравитоны не могут унести слишком много энергии. Рассуждая таким образом, физики показали (независимо от земных экспериментов), что дополнительные измерения должны быть меньше примерно одной сотой миллиметра.

— 286 —
Страница: 1 ... 281282283284285286287288289290291 ... 374