В противоположность W и Z, движение фотона не нарушается ненулевым зарядом хиггсовского поля. Это происходит потому, что, несмотря на наличие у вакуума слабого заряда, у него нет электрического заряда. Фотон, переносящий электромагнитное взаимодействие, взаимодействует только с электрически заряженными телами. По этой причине фотон может переносить дальнодействующее взаимодействие без всяких помех со стороны вакуума. Поэтому фотон остается единственным безмассовым калибровочным бозоном, даже при наличии ненулевого хиггсовского ПОЛЯ. Ситуация очень напоминает радарные ловушки для лихачей, с которыми вступил в борьбу Икар (хотя, по общему признанию, эта часть аналогии несколько слабее). Ловушки для лихачей пропускают скучные автомобили безнаказанно. Фотоны, как скучные нейтральные автомобили, всегда распространяются без помех. Кто бы мог подумать? Фотон, про который физики в течение многих лет считали, что знают про него все, имеет происхождение, которое можно понять только в рамках более сложной теории, объединяющей слабое и электромагнитное взаимодействия в единую теорию. Эту теорию принято называть электрослабой теорией, а соответствующую симметрию — электрослабой симметрией. Электрослабая теория и механизм Хиггса — главные успехи физики частиц. В рамках этой теории ясно объясняются не только массы слабых калибровочных бозонов, но и значение фотона. Кроме того, теория позволяет понять происхождение масс кварков и лептонов. Только что рассмотренные нами довольно абстрактные идеи четко объясняют весьма широкий круг свойств нашего мира. ПредупреждениеМеханизм Хиггса действует замечательно и придает массы кваркам, лептонам и слабым калибровочным бозонам, не приводя при этом к бессмысленным предсказаниям при высоких энергиях, а также объясняет, откуда возник фотон. Однако осталось еще одно существенное свойство хиггсовской частицы, которое физики до конца не понимают. Для того чтобы придать частицам их измеряемые массы, электрослабая симметрия должна быть нарушена примерно при 250 ГэВ. Эксперименты показывают, что частицы с энергиями больше 250 ГэВ ведут себя так, как будто они безмассовы, в то время как частицы с энергиями меньше 250 ГэВ действуют так, как будто у них есть массы. Однако электрослабая симметрия будет нарушаться при энергиях порядка 250 ГэВ, только если хиггсовская частица (иногда ее называют хиггсовским бозоном) сама имеет примерно такую же массу (мы опять используем соотношение E = mc2). Теория слабого взаимодействия не будет работать, если масса хиггсовского бозона будет намного больше. Если бы масса хиггсовского бозона была больше, нарушение симметрии происходило бы при более высокой энергии, и слабые калибровочные бозоны были бы тяжелее, в противоречии с экспериментальными данными. — 166 —
|