Закрученные пассажи

Страница: 1 ... 159160161162163164165166167168169 ... 374

С помощью картинки можно проследить, каким образом ненулевое поле нарушает симметрию слабого взаимодействия. На рис. 58 показан график с двумя осями, помеченными х и у. Эквивалентность двух хиггсовских полей похожа на эквивалентность осей х и у, на которых не помечены точки. Если повернуть график так, чтобы оси поменялись местами, картинка будет выглядеть так же, как и раньше. Это есть следствие обычной вращательной симметрии.

Заметим, что если изобразить точку в положении х = 0, у = 0, то вращательная симметрия полностью сохранится. Но если изобразить точку так, что у нее появится одна ненулевая координата, например, если x = 5 и y = 0, то вращательная симметрия оказывается нарушенной. Две оси уже более не эквивалентны, так как у этой точки значение ж, но не у, отлично от нуля.

Аналогичным образом механизм Хиггса спонтанно нарушает симметрию слабого взаимодействия. Если два хиггсовских поля равны нулю, симметрия сохраняется. Но если одно поле равно нулю, а другое отлично от нуля, симметрия слабого взаимодействия спонтанно нарушается.

Массы слабых калибровочных бозонов характеризуют точную величину энергии, при которой спонтанно нарушается симметрия слабого взаимодействия. Эта энергия равна 250 ГэВ, так что масштаб энергии слабых взаимодействий очень близок к массам слабых калибровочных бозонов W-, W+ и Z. Когда энергия частиц больше 250 ГэВ, взаимодействия происходят так, как будто симметрия сохраняется, но если энергия частиц меньше 250 ГэВ, симметрия нарушена и слабые калибровочные бозоны взаимодействуют так, как будто у них есть масса. При правильно подобранном значении неисчезающего хиггсовского поля симметрия слабого взаимодействия спонтанно нарушается при нужной энергии, а слабые калибровочные бозоны получают в точности нужную массу.

Преобразования симметрии, действующие на слабые калибровочные бозоны, действуют также на кварки и лептоны. При этом оказывается, что такие преобразования не будут оставлять все неизменным, за исключением случая, когда кварки и лептоны безмассовы. Это означает, что симметрия слабого взаимодействия будет сохраняться, только если кварки и лептоны не будут иметь массы. Так как симметрия слабого взаимодействия существенна при больших энергиях, то спонтанное нарушение симметрии необходимо не только для того, чтобы массы появились у слабых калибровочных бозонов, но и для того, чтобы массу приобрели кварки и лептоны. Механизм Хиггса — единственный способ приобретения масс у всех массивных фундаментальных частиц Стандартной модели.

— 164 —
Страница: 1 ... 159160161162163164165166167168169 ... 374