Вселенная полна загадок

Страница: 1 ... 148149150151152153154155156157158 ... 163

Может быть, точка, обозначенная 1, соседняя? Чувствую, что вы не соглашаетесь — ведь середина отрезка, соединяющего точки 0 и 1, ближе к нулевой точке, чем его правый конец. Нельзя, однако, и эту середину назвать соседней точкой, так как, поделив отрезок между ней и точкой пополам, мы найдем новую точку 1/4, которая, конечно, ближе к 0, чем точка 1. Но ведь этот процесс деления нового отрезка пополам можно снова продолжить и затем продолжать до бесконечности. Обиднее всего, что до соседней точки мы так и не доберемся, потому что от заветной нулевой точки нас всегда будет отделять половина делимого отрезка. Вывод неожиданный, но и несомненный: любая точка любой прямой не имеет рядом с собой соседних, то есть самых близких к ней точек.

А вот второй пример. Для ограниченных, конечных вещей существует очевидная аксиома: часть меньше своего целого. Например, часть этого листка бумаги меньше всего листа. Выполняется ли эта аксиома в «мире бесконечностей»? Проверим.

Напишите натуральные числа

1 2 3 4 5 6…

Знак «…» означает, что за цифрой 6 следует еще бесчисленное множество натуральных чисел. Теперь под каждым из них напишите его квадрат, то есть

1 2 3 4 5 6…

12 22 З2 42 52 62…

В верхнем ряду столько же чисел, сколько и в нижнем — вы просто во втором ряду написали те же числа, что и в первом ряду, но только над каждым из них приписали двойку — значок степени.

Раскроем теперь смысл этого значка, напишем результат возведения в степень:

1 2 3 4 5 6…

1 4 9 16 25 36…

Что же получилось? В первом ряду мы видим все натуральные числа, а во втором ряду только часть натуральных чисел (так, например, нет чисел 2, 3, 5, 6, 7, 8 и т. д.). Но от возведения в степень количество чисел во втором ряду не изменилось. Значит, по-прежнему в первом ряду столько же чисел, сколько и во втором. Следовательно, часть равна целому — обе бесконечности (верхний ряд и нижний ряд) оказались в этом смысле равными.

Приведенные примеры показывают, что с бесконечностью надо обращаться осторожно. Не все, что верно для ограниченного, конечного, остается правильным и для бесконечности.

Небольшой экскурс в область математики позволит нам теперь лучше понять астрономическую проблему бесконечности Вселенной.

То, что Вселенная нигде не может иметь конца или края, понимали еще наиболее передовые из древнегреческих философов. Например, у философа Архита мы встречаем такие рассуждения:

«Пусть я нахожусь на самом краю мира, на небесной тверди. Могу ли я протянуть руку или жезл во внешнее пространство или нет? Нелепо предполагать, что я не могу протянуть руку. Если же протяну, то внешнее окажется или телом, или пространством. В каждом таком случае мы можем перейти на эту новую полученную границу и задать тот же вопрос. Поскольку жезл будет каждый раз наталкиваться на нечто новое, ясно, что так будет и бесконечно… Таким образом, и тело и пространство оказываются бесконечными».

— 153 —
Страница: 1 ... 148149150151152153154155156157158 ... 163