Способ приспособления частей живых организмов к функциям целого, а также явная целенаправленность структуры и поведения живых организмов могут быть объяснены случайными генетическими мутациями, за которыми следует естественный отбор; при этом отбираются гены, увеличивающие способность организма выживать и воспроизводить; вредные мутации исключаются. Так неодарвинистская теория эволюции может объяснить целенаправленность; совершенно необязательно предполагать, что здесь участвуют какие-либо таинственные «витальные факторы». Очень мало известно о функционировании центральной нервной системы, но со временем, благодаря успехам биохимии, биофизики и электрофизиологии, станет возможным объяснить то, что мы называем разумом, на языке механизмов физико-химических процессов в мозге. Таким образом, живые организмы в принципе полностью объяснимы в терминах физики и химии. То, что мы сегодня не понимаем в механизмах развития и в деятельности центральной нервной системы, является следствием невероятной сложности этих проблем; но теперь, вооруженные новыми мощными концепциями молекулярной биологии и компьютерными моделями, мы можем взяться за решение этих задач в таких масштабах и такими способами, которые раньше были недоступны. В свете прошлых успехов вполне понятны оптимизм и уверенность в том, что все проблемы биологии могут быть до конца решены с позиций механистического подхода. Но реалистическая оценка перспектив механистического объяснения должна опираться на нечто более серьезное, нежели историческая экстраполяция; такая оценка может быть сформирована только после рассмотрения важнейших проблем биологии и способов, которыми они предположительно могут быть решены. 1.2. Проблемы морфогенезаБиологический морфогенез можно определить как «появление характерной и специфической формы в живых организмах»[17]. Первая проблема есть именно та, что форма обретает существование. Биологическое развитие эпигенетическое: появляются новые структуры, которые не могут быть объяснены как результат развертывания или роста структур, которые уже присутствуют в яйце в начале развития. Вторая проблема состоит в том, что многие развивающиеся системы способны регулировать, другими словами, если часть развивающейся системы удаляется (или если добавляется дополнительная часть), система продолжает развиваться таким образом, что образуется более или менее нормальная структура. Классическая демонстрация этого явления была проведена в 1890-е годы Г. Дришем в его экспериментах на эмбрионах морского ежа. Когда одну из клеток очень молодого эмбриона на двухклеточной стадии развития убивали, из оставшейся клетки развивалась не половина морского ежа, но совершенно целый морской еж, хотя и меньшего размера. Точно так же маленькие, но целые организмы развивались после разрушения любых одной, двух или трех клеток эмбриона на четырех-клеточной стадии. Напротив, после слияния двух молодых эмбрионов морского ежа развивался один гигантский морской еж[18]. — 12 —
|