V-E+F=2. (2) Так, у куба 6 граней (F= 6) и 8 вершин (V = 8). Отсюда получаем: 8 - ? + 6 = 2; 14 - Е = 2 и ? = 12. Уравнение (2) предсказывает, что у куба 12 ребер, и это соответствует действительности. Простое геометрическое доказательство уравнения (2) можно найти в книге Куранта и Роббинса «Что такое математика?»**. Пользуясь уравнением (2), легко доказать, что существует всего пять правильных тел. * В русскоязычной литературе принято говорить о Платоновых телах. - Пер. ** Курант Р., Роббинс Г. Что такое математика? Элементарный очерк идей и методов. РХД, 2001. 498 Каждое ребро правильного многогранника является общей стороной двух прилегающих друг к другу граней. Возвращаясь к примеру с кубом: каждое ребро - это граница между двумя квадратами. Если мы подсчитаем все стороны всех граней многогранника nF, то каждое ребро окажется сосчитанным дважды, то есть nF = 2E (3) Обозначим r число ребер, которые сходятся в одной вершине. Для куба r = 3. Кроме того, каждое ребро соединяет две вершины. Если мы подсчитаем концы всех ребер /V, то вновь сосчитаем каждую вершину дважды, то есть rV = 2E (4) Подставляя выражения для V и F из уравнений (3) и (4) в уравнение (2), получаем: Деление обеих частей уравнения на 2Е дает: (5) Мы знаем, что значение л не может быть меньше 3, поскольку треугольник является простейшим многоугольником. Нам также известно, что r не может быть меньше 3, поскольку в каждой вершине многогранника сходится не меньше трех граней. Если n и r одновременно будут больше 3, то с учетом того, что они являются целыми числами, левая часть уравнения (5) окажется меньше либо равна 1/2, и ни при каком значении Е оно не будет превращаться в равенство. Таким образом, осуществив reductio ad absurdum, мы доказали, что либо n=3 и r ? 3, либо r = 3 и n ? 3. Если n = 3, уравнение (5) принимает вид (1/3) + (1/r) = (1/2) + (1/Е) или (6) 499 В данном случае г может принимать только значения 3, 4 и 5. (При л, равном и большем 6, уравнение не имеет решений.) Значения n = 3, r = 3 соответствуют многограннику, у которого в каждой вершине сходится по три треугольника. Согласно уравнению (6) он имеет 6 ребер; согласно уравнению (3) у него 4 грани; согласно уравнению (4) - 4 вершины. Очевидно, что это пирамида, или тетраэдр. При n = 3, r = 4 получаем восьмигранник, у которого в каждой вершине сходится по четыре треугольные грани, - октаэдр. Значения n = 3, r = 5 соответствуют икосаэдру - многограннику с двадцатью треугольными гранями, в каждой вершине которого сходится по пять треугольников. — 297 —
|