Десять великих идей науки. Как устроен наш мир

Страница: 1 ... 279280281282283284285286287288289 ... 300

Теперь мы воспользуемся этими гёделевскими номерами, чтобы вывести результат Гёделя с помощью вариации процедуры из метода Кантора и решения Тьюрингом проблемы вычислимости. На самом деле Гёдель использовал гораздо более глубокие методы, доказав пятьдесят промежуточных теорем — опорные базы, — прежде чем достичь завершения доказательства. Следующий далее текст лишь ухватывает суть дела: представьте себе это как полет вертолета над вершиной горы. Однако, поскольку доказательство все же является трудным, даже урезанное и упрощенное до той степени, до которой мне удалось его адаптировать, вы можете свободно перескочить к месту, где восстанавливается нормальный размер шрифта.

Предположим, что у нас есть некоторое предложение относительно числа 0, мы назовем это предложение p0(0) , и такое же предложение относительно числа 1, которое мы назовем p0(1) , и так далее. Обозначим вообще это предложение относительно числа x как p0(x) . Эти предложения могут быть истинными, а могут ложными. Например, предложение «квадратный корень из x равен 1» в случае p0(0) ложно, поскольку утверждает, что ?0 = 1, что неверно, но в случае p0(1) оно истинно, так как ?1 = 1. Каждое из этих предложений имеет гёделевский номер, который мы можем вычислить, и существует бесконечное число таких предложений относительно каждого из бесконечного числа натуральных чисел. Обозначим эти предложения как p0(x), p1(x) и так далее: некоторые из них являются мусором, некоторые верны. Организуем теперь все соответствующие им гёделевские номера в огромную таблицу (с астрономически большими номерами там, где мы подставили малые номера). Верхний левый фрагмент этой таблицы может быть чем-то вроде:

Вход0123Предложение 0 0 552741 513 7172 02030 403 1322112

где каждое число во внутренних клетках таблицы есть (фальшивый) гёделевский номер соответствующего предложения. Так, фальшивый гёделевский номер предложения p3(x) относительно числа 2 равен 11.

Теперь составим отдельный список гёделевских номеров всех предложений, которые являются доказуемыми с помощью аксиом системы. Подобно нашему предположению о существовании заслуживающей доверия машины Тьюринга для решения вопроса о том, остановятся вычисления или нет, мы предположим, что такой список может быть составлен, но если это приведет нас к противоречию, нам придется отвергнуть это предположение.

И здесь, как и в аргументах Тьюринга, нас ожидает провал. Рассмотрим следующее предложение:

— 284 —
Страница: 1 ... 279280281282283284285286287288289 ... 300