Десять великих идей науки. Как устроен наш мир

Страница: 1 ... 278279280281282283284285286287288 ... 300

В формулировке арифметики, подобной формулировке Пеано, имеется лишь небольшое число символов.

Например, одна из аксиом гласит «элемент, непосредственно следующий за числом, есть также число». Мы ввели обозначение х' = sx , где s означает «непосредственно следующий за», так что s0 = 1 , s1 = ss0 = 2 , и так далее. Гёдель приписал число каждому элементарному знаку, используемому в выражениях. Предположим, что он приписал 5 знаку «=» и 7 знаку s . Каждая отдельная переменная, такая как x , описывается отдельным простым числом, большим 10. Например, мы припишем x число 11, а х' число 13. Гёделевским номером предложения является произведение всех чисел, соответствующих символам, которые содержит предложение; так, нашему предложению х' = sx приписывается значение 13 (для x' ) ? 5 (для «=») ? 7 (для s ) ? 11 (для x ), что дает 5005. Заметим, что посредством этой процедуры каждое предложение, включая аксиомы формализма, наделяется единственным номером[52], поэтому связи между предложениями становятся связями внутри арифметики. Например, мы можем ответить на метаматематический вопрос: встречается ли это предложение в более длинном, более сложном предложении, выяснив, является ли 5005 множителем в гёделевском номере сложного предложения, также как 5 является множителем 75.

Снабдим предложения индексами, используя их гёделевские номера, так что предложение х' = sx относительно числа 6 (которое должно читаться 6 = s 5, «6 непосредственно следует за 5») есть предложение p5005(6) . Вы можете ожидать, что сложные предложения имеют большие гёделевские номера, но в том, что последует ниже, мы будем делать вид, что можем обойтись малыми номерами, такими как p1(6) и p4(6) . Например, мы можем сделать вид, что Предложение 4, примененное к числу 6, является метаматематическим утверждением «6 есть совершенное число» (число, являющееся суммой своих простых множителей, в данном случае включая 1, 6 = 1 + 2 + 3 и 6 = 1 ? 2 ? 3), а Предложение 5 может сообщать о простых числах, и мы можем прочесть p5(11) как «11 есть простое число».

Математическое доказательство состоит из строки предложений, которые выводятся одно из другого с помощью использования правил обращения с символами. Это означает, что мы можем приписать отдельный номер целому доказательству , отметив гёделевские номера всех входящих в него предложений. Если доказательство состоит из трех предложений с гёделевскими номерами 6, 8 и 2 (на практике эти номера были бы огромны), то всему доказательству приписывается номер 26 ? 38 ? 52 = 10 497 600 (для более длинных доказательств ряд простых чисел 2, 3, 5 последовательно продолжают). Как вы можете вообразить, длинные доказательства, состоящие из сложных предложений, имеют астрономически большие гёделевские номера. И снова смыслом этой процедуры является то, что целые доказательства включаются в область арифметики. Мы можем использовать арифметические процедуры, чтобы, например, судить, используется ли одно доказательство в другом, определяя, входит ли гёделевский номер первого множителем в гёделевский номер второго, подобно тому, как 15 = 5 ? 3 означает, что 5 и 3 являются компонентами 15.

— 283 —
Страница: 1 ... 278279280281282283284285286287288 ... 300