Наиболее яркими и важными оказались результаты исследования нелинейной среды, в которой есть только два конкурирующих процесса. Это нелинейный источник, отражающий положительную обратную связь --- Q(T), и диссипативный процесс, нелинейность которого определяется коэффициентом k(T) Tt = (k(T)Tx)x + Q(T) (2) Если эти функции имеют степенной вид: Q(T) = q0, k(T) = k0, k0, q0,> 0,>0 (3) то модель (2) называют моделью тепловых структур. Название связано с ее происхождением --- первоначально она представлялась как упрощенная модель ряда процессов в физике плазмы и в теории управляемого термоядерного синтеза. Однако генезис модели сейчас не важен и ее вполне можно трактовать как феноменологическое описание распространения информации о некоторой проблеме в научном сообществе. При такой интерпретации "пространственная координата" x характеризует интенсивность контактов "удаленность друг от друга" членов научного сообщества, переменная t --- время, T --- плотность информации в научном сообществе. Смысл нелинейных зависимостей также весьма прост. Растущая функция Q(T) отражает тот факт, что чем больше мы знаем, тем больше шансов узнать что-то еще. Нелинейность поясняет простая притча:"Если у тебя есть яблоко, и ты отдал его мне, то яблок у тебя не осталось. Но если у нас есть по идее, и мы рассказали их друг другу, то у каждого стало по две идеи." Степенная зависимость k(T) отражает тот простой факт, что если не о чем рассказывать, то информация не раcпространяется k(0)=0, а чем значительнее достижения, тем быстрее узнает о них сообщество. Обсудим ряд свойств модели (2) и (3). Первый парадоксальный результат можно получить, предположив, что все члены сообщества одинаково информированы --- Tx=0. Тогда dT/dt = q0, T(0) = T0(4) гдеT0 --- плотность информации в начальный момент времени. Решение этого уравнения существует только конечный промежуток времени, определяемый начальным значением T(0) (см. рис.13). После этого в игру должны вступать другие стабилизирующие факторы, и следует переходить к другим моделям (как мы увидим в четвертой главе, именно такая ситуация возникает при феноменологическом описании демографических процессов). Обратим внимание на замечательный характер кривых, соответствующих решениям уравнения (4). В течение длительного времени (специалисты называют его квазистационарной стадией) функция T почти не меняется, кажется, что вообще ничего не происходит. Но вблизи момента времени tf, называемого временем обострения, неустойчивость приобретает взрывной характер. Стандартный алгоритм прогнозирования, до сих пор применяемый в социальных науках --- "посчитай на сколько процентов изменялась величина за предыдущий промежуток времени; чтобы получить будущее изменение, надо домножить этот процент на текущее значение". Знаменитый прием планирования "от достигнутого" --- здесь неприменим. — 46 —
|