Психология творчества

Страница: 1 ... 209210211212213214215216217218219 ... 275

4 Требование «возвратиться в исходную точку» необходимо лишь для задачи «4 точки». Для всех других задач оно излишне.

230


ний, которыми необходимо соединить точки, должно возрастать на две, соответственно каждому квадрату. Во всех случаях это количество линий будет составлять предел; меньшим числом, не нарушая требований условия задачи, соединить точки невозможно.

Нужное число линий соответственно избранному количеству точек легко определить,пользуясь уравнением

где у — количество линий, а х — количество точек, нарастающее как квадраты натурального ряда чисел (9, 16, 25, 36, 49, 64,81, 100, 122, 144 и т.д.).

Соответственно данной закономерности мы могли использовать задачи: «64 точки» (VIII); «81 точка» (IX); «100 точек» (X); «122 точки» (XI); «144 точки» (XII) и т. д.

В цедом цикл задач можно было рассматривать как сложную познавательную задачу — проблему. Однако эта проблема давалась испытуемым не сразу (например, «144 точки»), а по отдельным задачам — звеньям. Решение первого звена («3 точки») раскрывало исходный принцип («выйти за пределы плоскости, ограниченной точками»), пронизывающий весь последующий путь «восхождения».

Взрослым испытуемым одна за другой предъявлялись задачи данного цикла (I, II, III, IV, V, VI, VII и т. д.) до тех пор, пока испытуемый не вскрывал принцип, удовлетворяющий решению любого звена, т. е. пока не решалась вся сложная познавательная задача.

В других сериях опытов наряду с данной методикой использовались разного рода образующие задачи с последующим учетом их эффективности как по линии прямого, так и по линии побочного продукта.

Прежде всего был прослежен общий ход решения задач данного цикла, т. е. последовательное решение сложной познавательной задачи.

Решение задачи «-<? точки». Наиболее простой в познавательном отношении среди всех прочих задач является задача «3 точки». В этой задаче нахождение решения полностью совпадает с самим решением, поскольку необходимость в какой-либо конкретизации найденного принципа, его уточнения для применения к данным конкретным условиям задачи полностью отсутствует. Эта задача была бы наиболее удачным объектом для изучения интуитивных решений. Однако в этом отношении ей присущ недостаток: принцип выйти за пределы участка плоскости, ограниченного точками, перекрывается более простым приемом — возможностью соединить три точки просто двумя прямыми, не выходя при этом за указанные пределы. Поэтому для образования психологической трудности данная задача нуждается в усложнении условий, выражающемся во введении

— 214 —
Страница: 1 ... 209210211212213214215216217218219 ... 275