Геометрия тоже не может обойтись без дифференциальных уравнений. Мы используем их, чтобы определить кривизну объекта и вычислить ее изменение при переходе от точки к точке. Именно это делает геометрию необходимой для физических приложений. Приведем простой пример: ответ на вопрос, будет ли катящийся мяч двигаться с ускорением, то есть будет ли его скорость изменяться во времени, напрямую зависит от кривизны траектории мяча. Это только один пример тесной связи кривизны с физическими понятиями. По этой причине и геометрия — «наука о пространстве», включающая в себя все, что связано с кривизной, — играет важную роль во многих областях физики. Фундаментальные законы физики являются локальными в том смысле, что они всегда описывают поведение той или иной физической величины не во всем пространстве, а в отдельных, локальных , областях. Это справедливо даже для общей теории относительности, стремящейся описать кривизну всего пространственно-временного континуума в целом. В конце концов, и производные, фигурирующие в дифференциальных уравнениях, тоже берутся именно в отдельных точках. Все это создает проблему для физиков. Как сказал математик UCLA Роберт Грин: «Итак, исходя из локальной информации, такой как кривизна, необходимо узнать строение объекта как целого. Вопрос состоит в том, как это сделать»[25]. Рассмотрим для начала кривизну поверхности Земли. Поскольку провести измерения всего земного шара сразу крайне сложно, Грин предложил рассмотреть вместо этого следующую картину. Представим себе собаку, сидящую на прикрепленной к столбу цепи во дворе. Если у собаки есть возможность перемещаться хотя бы в небольших пределах, она сможет узнать, какую кривизну имеет тот участок земли, который ограничен длиной цепи. В данном случае предполагается, что эта кривизна положительна. Представим теперь, что в каждом дворе мира живет подобная собака, привязанная к столбу, и каждый из участков земли вокруг этих столбов имеет положительную кривизну. Сведя воедино все эти данные о локальной кривизне, можно сделать вывод, что топологически данная планета должна иметь сферическую форму. Рис. 3.2. Графики, иллюстрирующие движение объекта вдоль определенной траектории. Скорость — величина, показывающая, насколько быстро положение объекта изменяется с течением времени, может быть получена путем взятия производной по кривой перемещения. Производная определяется наклоном кривой в данной точке и численно равна скорости в соответствующий момент времени. Ускорение, величина которого показывает, как изменяется скорость с течением времени, можно, в свою очередь, получить, взяв производную по кривой зависимости скорости от времени. Значение ускорения в определенный момент времени определяется наклоном кривой в соответствующей точке — 45 —
|