В своем знаменитом сочинении Евклид заложил основы не только геометрии, но и всей математики, которая неразрывно связана с тем принципом аргументации, который сейчас называют Евклидовым: любое доказательство начинается с четкого определения понятий и набора однозначно установленных аксиом или постулатов (эти два слова являются синонимами) и осуществляется при помощи строгих логических умозаключений; доказанная теорема, в свою очередь, может быть положена в основу доказательства дальнейших утверждений. Евклид, пользуясь исключительно этим методом, доказал в общей сложности больше четырехсот теорем, сведя таким образом воедино все геометрические знания своего времени. Стэнфордский математик Роберт Оссерман объяснил столь безапелляционное приятие метода Евклида следующим образом: «В основе всего лежало чувство уверенности, что в мире абсурдных суеверий и сомнительных догадок утверждения, приведенные в “Началах”, являются твердо установленной истиной без малейшей тени сомнения». Эдна Сент-Винсент Миллей выразила аналогичное восхищение в своем стихотворении «Евклид один лишь видел обнаженной красоту».[17] Следующим человеком, внесшим решающий вклад в предмет нашего рассказа, — впрочем, без какого-либо пренебрежения к заслугам других достойных математиков, о достижениях которых мы не упомянули — можно считать Рене Декарта. Как уже говорилось в предыдущей главе, Декарт значительно расширил сферу исследований геометрии, введя систему координат, позволившую математикам рассуждать о пространствах любых размерностей и использовать алгебру при решении геометрических задач. До того как Декарт преобразовал геометрию, ее область исследований была ограничена прямыми линиями, окружностями и коническими сечениями — такими кривыми, как параболы, гиперболы и эллипсы, которые можно получить, рассекая плоскостью бесконечный конус под разными углами. Появление системы координат дало возможность описывать при помощи уравнений очень сложные фигуры, которые невозможно вообразить каким-либо другим способом. Рассмотрим, к примеру, уравнение xn + yn = 1 . При помощи декартовых координат решить это уравнение и нарисовать соответствующую кривую не составит труда. Однако до появления системы координат было непонятно, как ее изобразить. В местах, которые ранее считались непроходимыми, Декарт указал путь, по которому двигаться дальше. Этот путь стал еще четче, когда через пятьдесят лет после Декарта Исаак Ньютон и Готфрид Лейбниц, разделяющие идеи Декарта в области аналитической геометрии, создали дифференциальное и интегральное исчисление. На протяжении десятилетий и столетий новые инструменты дифференциального и интегрального исчисления внедрялись в геометрию такими математиками, как Леонард Эйлер, Жозеф Лагранж, Гаспар Монж и, в первую очередь, Карл Фридрих Гаусс, под чьим руководством в 1820-х достигла своего совершеннолетия так называемая дифференциальная геометрия . Дифференциальная геометрия предполагает использование декартовой системы координат для описания поверхностей, которые затем могут быть детально проанализированы с помощью методов дифференциального исчисления; дифференцирование — это метод нахождения угла наклона любой гладкой кривой. — 29 —
|