Теория струн и скрытые измерения Вселенной

Страница: 1 ... 2324252627282930313233 ... 302

Помимо ценности теоремы Пифагора самой по себе, без сомнения являющейся краеугольным камнем геометрии, не менее важным представляется и тот факт, что ее истинность была доказана, и это доказательство стало первым зафиксированным доказательством в математике. Египетские и вавилонские математики использовали отношение между катетами и гипотенузой прямоугольного треугольника задолго до рождения Пифагора. Но ни египтяне, ни вавилоняне не только никогда не пытались доказать эту теорему, но, по-видимому, и само понятие доказательства им было незнакомо. По словам математика Э. Т. Белла, именно доказательство теоремы и стало наибольшим вкладом Пифагора в геометрию:

До него геометрия была скорее собранием эмпирически установленных правил, без каких-либо ясных указаний на их взаимную связь и без малейшего предположения, что эти правила можно логически вывести из сравнительно небольшого числа утверждений. Метод доказательства настолько пронизывает сейчас всю математику, что кажется подразумевающимся сам собой, и нам трудно представить себе время, когда этого метода еще не существовало.[15]

Вполне возможно, что именно Пифагор впервые доказал эту теорему, хотя вы должны были обратить внимание на мои слова о том, что ему лишь «приписывается» ее доказательство, будто бы существуют некоторые сомнения по поводу авторства. Так оно и есть. Пифагор был культовой фигурой, и многие из открытий его помешанных на математике последователей были приписаны Пифагору задним числом. Таким образом, вполне возможно, что доказательство теоремы Пифагора было получено одним из продолжателей его дела через одно или два поколения после Пифагора. Правды мы уже никогда не узнаем: Пифагор жил в VI столетии до нашей эры и практически не оставил после себя никаких записей.

К нашему счастью, сказанное выше не относится к наследию Евклида, одного из наиболее известных геометров всех времен и народов, превратившего геометрию в точную, строгую дисциплину. В отличие от Пифагора, Евклид оставил после себя огромное количество сочинений, наиболее выдающимся из которых являются «Начала», увидевшие свет примерно в 300 году до нашей эры — трактат в тринадцати томах, восемь из которых посвящены геометрии в двух и трех измерениях. «Начала» называют одной из наиболее влиятельных книг из когда-либо написанных, «прекрасным трудом, значение которого сравнимо разве что со значением Библии».[16]

Рис. 2.1. Теорему Пифагора чаще всего иллюстрируют для случая двух измерений, изображая прямоугольный треугольник, в котором сумма квадратов катетов равна квадрату гипотенузы: a2 + b2 = c2 . Однако, как показано на приведенном рисунке, эта теорема так же верна и для случая трех и большего числа измерений a2 + b2 + c2 = d2

— 28 —
Страница: 1 ... 2324252627282930313233 ... 302