Рис. 8.2. Для того чтобы создать черную дыру путем обертывания браны вокруг объекта, последний должен быть стабильным. По аналогии можно рассмотреть обертывание резиновой ленты вокруг деревянного шеста. Из двух показанных здесь примеров, на рисунке справа представлен более стабильный объект, потому что в данном случае резиновую ленту обертывают вокруг области минимального диаметра, что удерживает ленту на месте и препятствует ее сползанию в стороны Тем не менее требуется нечто большее, чем тяжелая брана или много тяжелых бран, чтобы создать черную дыру. Вам также необходимо каким-то способом стабилизировать ее, что проще всего сделать, по крайней мере теоретически, путем обертывания браны вокруг чего-то стабильного, что не сжимается. Проблема заключается в том, что объект, который имеет высокое натяжение (выражаемое как масса на единицу длины, площади или объема), может сокращаться до такого малого размера, что почти исчезает, не обладая соответствующей структурой, чтобы остановить этот процесс, подобно тому как ультратугая резиновая лента сжимается в плотный комок, если ее предоставить самой себе. Ключевым ингредиентом была суперсимметрия, которая, как уже говорилось в шестой главе, обладает особенностью предохранять основное или вакуумное состояние системы от падения на все более низкие энергетические уровни. Суперсимметрия в теории струн часто подразумевает многообразия Калаби-Яу, потому что такие пространства автоматически включают в себя эту особенность. Так что задача состоит в нахождении стабильных субповерхностей в пределах многообразий Калаби-Яу, чтобы обернуть их в браны. Эти субповерхности, или субмногообразия, которые обладают меньшей размерностью, чем само пространство, иногда называют циклами (это понятие уже вводили в книге), которые иногда можно представить как несжимающуюся петлю вокруг или сквозь часть многообразия Калаби-Яу. Говоря техническим языком, петля является одномерным объектом, но циклы включают больше измерений, и их можно рассматривать как несжимающиеся «петли» более высокой размерности. Физики склонны считать, что цикл зависит только от топологии объекта или дыры, вокруг которого вы можете осуществить обертывание, независимо от геометрии этого объекта или дыры. «Если вы измените форму, то цикл останется тем же, но вы получите другое субмногообразие, — объясняет Инь. Он добавляет, что поскольку это свойство топологии, то цикл сам по себе ничего не может сделать с черной дырой. — И только когда вы наворачиваете на цикл одну или несколько бран, вы можете начинать говорить о черной дыре».[137] Для того чтобы обеспечить стабильность, объект, которым вы производите обертывание — будь то брана, струна или резиновая лента, должен быть тугим, без каких-либо складок. Цикл, вокруг которого вы осуществляете обертывание, должен быть минимально возможной длины или площади. Укладывание резиновой ленты вокруг однородного, цилиндрического шеста не является примером стабильной ситуации, потому что ленту легко можно переместить со стороны на сторону. В то же время, если шест имеет разную толщину, то стабильные циклы, которые в данном случае представляют собой круги, можно найти в точках локального минимума диаметра шеста, где резиновая лента не будет ползать из стороны в сторону. — 168 —
|