Тот факт, что числа Ходжа для многообразия и его зеркального партнера симметричны относительно диагонали, является следствием, а не объяснением зеркальной симметрии, поскольку это возможно и для двух многообразий, не являющихся зеркальными парами. Взаимосвязь между числами Ходжа для различных многообразий, обнаруженная Грином и Плессером, была не доказательством, а лишь намеком на то, что им удалось обнаружить новое проявление симметрии. Намного более убедительным, по словам Плессера, стало то, что им удалось обнаружить «полную идентичность» физики (или конформных теорий поля) многообразий, являющихся зеркальными парами.[100] Независимое подтверждение идей Грина и Плессера появилось в том же 1989-м, через несколько дней после того, как они отправили свою статью в печать. Как сообщил Грину Канделас, ему и двум его студентам удалось, перебрав большое количество рассчитанных на компьютере многообразий Калаби-Яу, обнаружить весьма интересную особенность. Они заметили, что эти многообразия образуют пары, в которых число дырок четной размерности для одного многообразия совпадало с числом дырок нечетной размерности для второго. Обнаруженный обмен числом дырок, количеством возможных форм и размеров и числами Ходжа между двумя многообразиями весьма заинтриговал исследователей, хотя и мог быть просто математическим совпадением. По словам Грина, «вполне возможно, что их связь имела такое же отношение к физике, как связь между магазином, в котором молоко продают по доллару, а сок — по два, и магазином, в котором сок стоит два доллара, а молоко — один. Точку в этом вопросе поставило доказательство, найденное мной и Плессером, которым мы показали, что различные пары многообразий Калаби-Яу приводят к одинаковой физике. Это и стало подлинным определением явления зеркальной симметрии — из которого уже проистекали все прочие следствия, — и это гораздо больше, чем простая перестановка двух чисел».[101] По словам Грина, эти два направления исследований были не только параллельными, но и «взаимодополняющими». В то время когда они с Плессером углубились в исследование физической природы указанных совпадений, Канделасу со своими студентами при помощи их компьютерной программы удалось обнаружить огромное количество многообразий Калаби-Яу, для которых числа Ходжа образовывали зеркальные пары. Когда эти статьи вышли в свет (обе в 1990 году), Грин объявил, что «зеркальная симметрия теории струн» окончательно установлена.[102] По словам Кумруна Вафы, он был счастлив, увидев доказательство, в которое он внес заметный вклад, — хотя и никогда не сомневался в существовании зеркальной симметрии. «Я иногда говорю, что если бы мы сформулировали эту теорию без каких-либо известных примеров, то это было бы намного более смелым шагом с нашей стороны», — иронизирует он.[103] — 146 —
|