Физикам знаком метод, позволяющий связать квантовую теорию поля с заданным многообразием. Однако поскольку многообразие, как правило, имеет бесконечное число циклов, они обычно прибегают к аппроксимации, сводящей это бесконечное число к конечному, с которым уже можно свободно обращаться. Этот процесс носит название квантования — взяв величину, которая может принимать бесконечное число возможных значений, например частоты радиоволн в FM-диапазоне, только о некоторых из них говорят как о разрешенных. Подобный процесс приводит к введению квантовых поправок в исходное уравнение, которое описывает циклы и, следовательно, когомологию. По этой причине говорят именно о квантовой когомологии . Как оказалось, существует не единственный способ введения квантовых поправок. Благодаря зеркальной симметрии для любого многообразия Калаби-Яу можно построить эквивалентный ему с физической точки зрения зеркальный партнер. Многообразия, являющиеся зеркальными партнерами, описываются двумя различными по виду, но эквивалентными по сути вариантами теории струн, типа IIA и типа IIB, которые описывают одну и ту же квантовую теорию поля. Мы можем сделать эти расчеты относительно легко для модели В, где квантовые поправки оказываются равными нулю. Расчет же для модели А, в которой квантовые поправки в нуль не обращаются, практически невозможен. Примерно через год после выхода статьи Грина и Плессера, внимание математического сообщества привлекло новое открытие в области зеркальной симметрии. Канделасу, Ксении де ла Осса, Полу Грину и Линде Паркс удалось показать, что зеркальная симметрия может оказать помощь при разрешении математических задач, в частности в области алгебраической и нумеративной геометрии, в том числе некоторых из тех, что не поддавались математикам на протяжении десятилетий. Задача, которую рассмотрел Канделас со своими коллегами, носила название задачи трехмерной поверхности пятого порядка и в то время была у всех на слуху. Свое второе название — задача Шуберта — она получила в честь немецкого математика XIX века Германа Шуберта, решившего ее первую часть. Задача Шуберта имеет отношение к определению количества рациональных кривых — то есть кривых рода 0, не имеющих дырок, таких как сфера, — которые можно провести на многообразии Калаби-Яу пятого порядка (шестимерном). Подобный расчет может показаться весьма странным занятием для того, кто не увлекается нумеративной геометрией, — для тех же, кто работает в этой области, подобная деятельность является вполне привычной. На самом деле задача весьма проста — это не сложнее, чем высыпать на стол конфеты из вазы и сосчитать их. Расчет числа определенных объектов на многообразии и очерчивание круга приложений, в которых полученное число может оказаться полезным, на протяжении столетия или больше были важнейшими задачами для математиков. Число, которое необходимо найти, в конце этого процесса должно оказаться конечным, поэтому поиск нужно ограничить компактными пространствами, небесконечными плоскостями. Если, к примеру, необходимо рассчитать число точек пересечения между двумя кривыми, то в случае наличия точек соприкосновения между кривыми могут возникнуть затруднения. Впрочем, математики, занимающиеся нумеративной геометрией, уже разработали методики, позволяющие разобраться с этими сложностями и получить строго определенное число. — 148 —
|