Теория колебаний (преимущественно нелинейных) стала обширной дисциплиной, новые успехи которой были достигнуты на пути дальнейшего развития и взаимного влияния асимптотических, топологических и функциональных методов. Проведенный в Киеве в 1961 г. Международный симпозиум по нелинейным колебаниям показал, что советская наука сохраняет здесь свое ведущее положение. Направление Н.М. Крылова и Н.Н. Боголюбова стало большой научной школой, значительные коллективы работают в Горьком и в Москве (школы Мандельштама, Папалекси, Андронова), заметный вклад вносят в нелинейную механику многочисленные исследователи других научных центров. Теория устойчивости по-прежнему занимает одно из первых мест по числу исследований и исследователей, занимающихся ее проблемами. В ней постепенно происходит переход от разработки общих методов к анализу сравнительно частных, но практически весьма важных задач, выдвигаемых смежными областями — теорией колебания и теорией регулирования. Возможно, что со временем будет принята такая классификация наук, согласно которой теория регулирования не будет включена в механику. Однако эта теория очень близка к механике по своим методам, многое у нее заимствует, и поэтому пока нет оснований отделять ее от механики. Начиная с 40-х годов теория регулирования развивается в нарастающем темпе, что естественно в эпоху автоматизации производственных процессов и внедрения различных кибернетических устройств, следящих систем, систем с дистанционным управлением и т. д. В теории деформируемых твердых тел, несмотря на широкое развитие всех прежних направлений, центр тяжести стал смещаться в сторону новых схем: упругопластическое, вязкопластическое состояние, явления упрочнения (наклеп), ползучесть, нелинейные упругопластические колебания, механика сыпучей среды и грунтов. В настоящее время эти направления в своей совокупности превосходят по числу посвященных им работ и численности занимающихся ими исследователей классические разделы теории упругости. Во всех этих направлениях шла работа и над принципиальными основами, и над решением частных задач. В механике жидкостей и газов наблюдается сходный процесс. Необходимость учета сжимаемости среды при движениях с большими дозвуковыми, затем околозвуковыми и сверхзвуковыми скоростями, когда термодинамика процесса играет первостепенную роль, заставляет все больше усилий уделять газовой динамике — дисциплине, в начале века составлявшей небольшую главу механики, а теперь соперничающей по объему материала и размаху исследований с классической аэродинамикой. Изучаются движения в газообразной среде и с так называемыми гиперзвуковыми скоростями — скоростями космических кораблей и метеоров, когда надо принимать во внимание и диссоциацию молекул газа. В гидромеханике схема идеальной жидкости в двумерных стационарных задачах при современных возможностях математического аппарата представляется почти исчерпанной. Больше внимания привлекают нестационарные задачи плоского движения идеальной жидкости и трехмерные задачи, особенно механика вязкой (несжимаемой) жидкости. Статистические методы остаются основными в теории турбулентности, где еще предстоит решить ряд кардинальных проблем. Очень большое место занимают теперь такие разделы, как движение жидкости и газа в пористых средах, теория взрывных процессов на основе гидродинамической схемы, теплопередача при движении жидкостей и газов. — 258 —
|