Интересные результаты в области механики переменных масс были получены при решении астрономических проблем. Здесь основным предметом исследований была задача двух тел. Г.Н. Дубошин в 1926—1930 гг. опубликовал серию статей «О форме траекторий в задаче о двух телах с переменными массами». Эта задача сводится к изучению интегро-дифференциального уравнения, решение которого выражается с помощью рядов, расположенных по степеням малого параметра. В.В. Степанов (1889—1950) в работе «О форме траекторий материальной точки в случае притяжения по закону Ньютона переменной массой» (1930) исследовал вопрос о форме орбиты точки постоянной массы, находящейся под действием переменной центральной массы. Он показал, что при некотором законе изменения массы притягивающей точки орбитой движущейся точки может быть любая кривая, обращенная вогнутостью к центру. А.С. Лапин в работе «Задача двух тел с переменными массами» (1944) исследовал случаи интегрируемости уравнений движения двух тел переменной массы, пользуясь методом замены переменных, введенным И.В. Мещерским. Таким образом, он свел задачу о движении точки переменной массы к задаче движения точки постоянной массы, воспользовавшись специальным прибором преобразования относительно радиуса-вектора и времени. Оказалось, что если массы взаимопритягивающихся по закону Ньютона материальных точек возрастают с течением времени, то задача о движении двух точек переменной массы сводится к изучению движения точки постоянной массы, притягивающейся по закону Ньютона и находящейся под действием силы сопротивления, равной произведению скорости на некоторую функцию времени. ПОСЛЕВОЕННЫЙ ПЕРИОДВ годы Великой Отечественной войны работа советских механиков была подчинена главной цели — содействовать повышению боевой мощи вооруженных сил и решать самые насущные задачи, выдвигаемые промышленностью в условиях военного времени. Но сил хватало и на продолжение теоретических исследований во многих направлениях. Не удивительно, что сразу же после войны исследования по механике ведутся по всем прежним направлениям, только с еще большим размахом, а вскоре начинается разработка новых направлений. В аналитической механике в послевоенный период усиленно развивалась теория неголономных систем — как общие вопросы, так и решение частных задач. По-прежнему много внимания уделялось гироскопии. В теории динамических систем перешли к исследованию вопросов такой общности, что это направление можно отнести скорее к математике, чем к механике. Здесь происходит тот закономерный переход к более высокой степени общности, который со временем приведет к конкретизации получаемых результатов — при их применении к решению более сложных практических проблем. — 257 —
|