Особые усилия прилагал Ньютон к тому, чтобы добиться союза математики и физики в области оптики. В оставшихся забытыми «Лекциях по оптике» он писал: «Так же как астрономия, география, мореплавание, оптика и механика почитаются науками математическими, ибо в них дело идет о вещах физических, небе, земле, кораблях, свете и местном движении, так же точно и цвета относятся к физике, и науку о них следует почитать математической, поскольку она излагается математическим рассуждением. Точная наука о цветах относится к труднейшим из тех, кои желательны были бы философу. Я надеюсь на этом примере показать, что значит математика в натуральной философии, и побудить геометров ближе подойти к исследованию природы, а жадных до естественной науки сначала выучиться геометрии, чтобы первые не тратили все время на рассуждения, бесполезные для жизни человеческой, а вторые, старательно выполнявшие до сих пор свою работу превратным методом, разобрались бы в своих надеждах, чтобы философствующие геометры и философы, применяющие геометрию, вместо домыслов и возможностей, выхваляемых всюду, укрепляли бы науку о природе высшими доказательствами»129. Обращая внимание на эти малоизвестные строки «Лекций», С.И. Вавилов писал: «Сложное учение о цветах Ньютон впервые поставил на почву измерительного физического опыта и математического расчета. Учение о цветах наряду с геометрической оптикой заняло законное место в «quadrivium»130. Нет сомнения, что в этой и в аналогичных областях эксперимент и наблюдение должны были играть совершенно иную роль, чем при математическом исследовании математических начал натуральной философии. Так наука на рубеже XVIII в. оказалась лицом к лицу с новыми проблемами математико-механического истолкования явлений и новой необозримой областью научного экспериментирования. Ньютон сформулировал основную задачу, которую решает наука в этой новой области. Он говорил о двух вопросах, ответы на которые содержатся в «Началах натуральной философии». Один вопрос — это вопрос о поведении тел, об их положениях, скоростях и ускорениях, когда заданы действующие на них силы. Это механика в собственном смысле. Второй вопрос о силах, когда заданы положения тел. Как мы видели, этот второй вопрос был центральным вопросом ньютоновой теории тяготения. Последняя стала образцом для появившихся впоследствии концепций магнитного и электрического полей с тем, впрочем, различием, что эти поля зависят, как оказалось, одно от другого. Но такое отличие уже выводило науку за рамки ньютоновой схемы и означало эмансипацию физики от власти механики. Следующим актом этой эмансипации было подчинение самой механики более общим понятиям теории поля. — 118 —
|