Почему мы не проваливаемся сквозь пол

Страница: 1 ... 6263646566676869707172 ... 180

Рис. 31. Концентрация напряжении вблизи кончика эллиптической трещины.

Растягивающие напряжения направлены под прямым углом к трещине, то есть параллельно приложенной нагрузке. Заштрихованная область представляет собой трещину. Вдоль кривых коэффициенты концентрации постоянны, числа, проставленные на них, показывают, таким образом, во сколько раз местное напряжение превышает среднее по образцу. Максимальная величина концентрации - около 200. Абсолютная величина концентрации зависит от длины трещины, но пропорции остаются неизменными.

Из рис. 31 видно, что напряжения, направленные вертикально, то есть силы, стремящиеся раскрыть трещину, разорвать ее, очень велики, особенно в области, вплотную примыкающей к кончику трещины. Самые опасные напряжения приходятся на область, примерно равную площади одной атомной связи. Численная величина максимального напряжения равна здесь полученному Инглисом напряжению в самой крайней точке трещины (правда, это точное значение не столь уж важно, потому что все подобные расчеты основаны на каких-то допущениях). Но если мы продвинемся вперед от трещины, перескочим, грубо говоря, на следующую атомную связь, то обнаружим, что напряжение на ней упало в два с лишним раза по сравнению с максимальной величиной. Вероятно, эти соотношения верны всегда, и они очень ясно показывают, что большая часть нагрузки концентрируется в материале на единственной цепочке атомных связей, проходящей через самый кончик острой трещины; следует лишь помнить, что мы имеем дело с твердым телом (а не с листом бумаги) и кончик трещины представляет собой линию в трехмерном пространстве. Как только перегруженная связь на кончике трещины лопнет, пик концентрации напряжений переместится на следующую связь и т.д. и т.д., подобно петлям на чулке.

Если увеличивать только прочность химических связей, то это мало повлияет на прочность тела, содержащего дефекты, так как этот путь не уменьшает концентрации напряжений у трещин. Именно поэтому алмаз и сапфир - вещества хрупкие и обычно не очень прочные, несмотря на их большую твердость и высокую энергию химических связей. На этом можно было бы и поставить точку в истории о прочности и хрупкости, если бы дело ограничивалось более или менее упругими и более или менее однородными телами. С такой точки зрения практически безразлично, с какого рода телом мы имеем дело - кристаллическим, стеклообразным или даже полимером; несущественна и величина модуля Юнга. Важно лишь, чтобы тело подчинялось закону Гука в достаточно широкой области деформаций, вплоть до разрушения. Хрупкость - не есть особое состояние, она является нормальным состоянием всех простых твердых тел.

— 67 —
Страница: 1 ... 6263646566676869707172 ... 180