Почему мы не проваливаемся сквозь пол

Страница: 1 ... 6061626364656667686970 ... 180

Не так давно мы с Дж. Куком решили разобраться в этом явлении количественно. В материаловедении многие задачи связаны с математическими трудностями, теоретически разрешимыми, но требующими слишком трудоемкой вычислительной работы. К таким задачам относится в какой-то мере и расчет распределения напряжений вокруг трещины. Но мы должны знать некоторые особенности картины напряжений вокруг трещины, если хотим предугадать, как поведет себя трещина, столкнувшись на своем пути с какой-либо неоднородностью. Ведь стеклопластик - материал явно неоднородный, особенно интересная неоднородность возникает на границе раздела между волокном и смолой.

В наше время ЭВМ меняют все представления о вычислительных трудностях. Концентрация напряжений у кончика трещины была впервые вычислена Инглисом в 1913 году. Мы уже говорили об этом, его результаты можно считать классикой, они абсолютно верны. С тех пор целый ряд ученых, более способных, чем мы, работали над этой проблемой. Но дьявольски громоздкий математический аппарат одних заставлял предполагать, что кончик трещины бесконечно остер, то есть имеет нулевой радиус; тех же, кто считался с конечным радиусом головки трещины, та же самая математика принуждала использовать очень приближенные методы или же определять картину напряженного состояния только в какой-то ограниченной области. Предположение о бесконечно острой трещине ведет к бесконечно большим напряжениям, что, очевидно, лишено реального смысла и не помогает в решении проблемы разрушения[30].

Приближенные методы, использовавшиеся для случая конечного радиуса головки, не давали достаточно полного представления о том, что делается у самого кончика трещины, то есть там, где идет разрушение.

Как бы то ни было, с электронно-вычислительной машиной или без оной, я, вероятно, не смог бы управиться со всей этой математикой, но Куку нравятся такого рода упражнения, и, использовав вычислительную машину “Меркурий”, он сумел определить напряжения очень близко к кончику трещины с конечным радиусом.

Общая картина напоминает картину, показанную на рис. 18. Немного обобщая ее, мы могли бы изобразить траектории напряжений, то есть направления, по которым напряжения передаются с одной атомной связи на другую, как это сделано на рис. 30. Эта схема поможет нам понять детали картины напряжений, полученной Куком.

— 65 —
Страница: 1 ... 6061626364656667686970 ... 180