Рис. 56. Примерный вид кривых деформирования эластина и коллагена. Рис. 56а. Поперечный разрез артерии под микроскопом. Упругие свойства артерии обеспечивает эластин, укрепленный перекрученными коллагеновыми нитями. (Артерии, освобожденные от крови, делаются плоскими.) Роль коллагеновых волокон не сводится только к увеличению жесткости ткани при больших деформациях, они, по-видимому, нужны и для того, чтобы обеспечить "вязкость" ткани, то есть ее трещиностойкость. Когда на живой ткани возникает порез в результате травмы или под действием скальпеля, на первой стадии процесса заживления на заметных расстояниях вокруг раны коллагеновые волокна временно исчезают. Только после того, как полость раны заполняется эластином, коллагеновые волокна образуются вновь и восстанавливается полная первоначальная прочность ткани. Этот процесс может продолжаться 3 или 4 недели, и пока он не закончится, величина работы разрушения ткани в окрестности раны чрезвычайно мала. Поэтому, если в течение двух-трех недель после хирургической операции требуется вновь вскрыть зашитую полость, в этом месте бывает трудно наложить надежные швы. Коллаген существует в различных формах, в частности, он может состоять из перекрученных нитей протеиновых молекул. Его сопротивление деформированию определяется главным образом натяжением связей между атомами в молекулах, и потому он ведет себя, по Гуку, подобно нейлону или стали. А почему эластин ведет себя почти так же, как пленки жидкости с поверхностным натяжением? Краткий ответ на этот вопрос состоит в том, что на самом деле этого никто не знает. Однако профессоры Вейс-Фог и Андерсен выдвинули предположение, что такое поведение может быть обязано некоей модифицированной форме поверхностного натяжения. Согласно их гипотезе эластин состоит из сети гибких длинных цепочек молекул, находящихся внутри эмульсии. Капельки жидкости в составе эмульсии смачивают эти молекулярные цепочки, в то время как основное вещество эмульсии их не смачивает. В связи с этим молекулярным цепям энергетически выгодно почти по всей их длине свернуться в клубки внутри капелек жидкости (рис. 57, а ). При действии растягивающих нагрузок они вытягиваются из капель и распрямляются (рис. 57, б )[61]. Рис. 57. Предполагаемое строение эластина. а - недеформированное состояние, цепи молекул находятся главным образом в скрученном состоянии внутри капелек; б - деформированное состояние, цепи молекул вытянуты из капелек. — 102 —
|