Конструкции, или почему не ломаются вещи

Страница: 1 ... 9596979899100101102103104105 ... 245

Такой иммунитет к концентрации напряжений определяется отнюдь не мягкостью тканей и малым модулем Юнга. Резина тоже мягкая, и ее модуль Юнга тоже очень мал, однако все мы помним с детства, как выпущенные в сад воздушные шарики очень скоро с шумом лопались, наткнувшись на шипы первого же куста. Детьми мы не понимали, что из-за концентрации напряжений и малой величины работы разрушения от прокола в натянутой резине очень быстро распространяется трещина, а если бы и понимали, то вряд ли это уменьшило бы наши огорчения. Перепонка же крыла летучей мыши ведет себя иначе, хотя также сильно натягивается в полете. При проколе крыла разрыв от этого места распространяется редко и повреждение скоро заживает, несмотря на то что мышь не перестает летать.

Объяснение этого кроется, я думаю, в существенных различиях упругих свойств и величин работы разрушения резины и биологических тканей. В настоящее время данные о работе разрушения мягких биологических тканей, по существу, отсутствуют, однако зависимости напряжения от деформации в большинстве случаев известны очень хорошо, а между формой этих зависимостей и работой разрушения, по-видимому, имеется тесная связь.

Интересный пример составляет пленка куриного яйца - пленка, которую мы видим за завтраком сразу под скорлупой вареного яйца. Это одна из немногих биологических мембран, которые подчиняются закону Гука, в данном случае - вплоть до деформаций около 24%, когда происходит разрыв пленки. Простой (правда, грозящий легкими неприятностями) эксперимент с сырым яйцом показывает, что эта пленка легко рвется. Так, конечно, и должно быть, поскольку иначе цыпленку было бы трудно вылупиться из яйца. Между прочим, округлая форма самой скорлупы такова, что ее трудно разрушить снаружи, но легко разбить изнутри.

Яичная пленка - ткань, по-видимому, исключительная; по самому своему предназначению она подлежит разрушению после того, как сделает свое дело, сохранив в яйце влагу и защитив его от инфекции. Вероятно, именно по этой причине она обладает, как мы говорили, особыми упругими свойствами. Однако упругие свойства подавляющего большинства мягких тканей совершенно другие, их характеризует зависимость, показанная на рис. 53, и, для того чтобы выполнять свое назначение, большинству из этих тканей необходимо быть "вязкими". На практике оказывается, что материалы с зависимостью напряжения от деформации подобного типа рвутся с очень большим трудом; следует заметить, что внутренние причины этого не вполне ясны. Одна из причин, возможно, состоит в том, что запасаемая упругая энергия, которая может идти на развитие трещины (а она дается площадью под кривой деформирования - см. гл. 4), меньше, чем для других типов кривой деформирования[60].

— 100 —
Страница: 1 ... 9596979899100101102103104105 ... 245